How to take column-slices of dataframe in pandas

How to take column-slices of dataframe in pandas

In Pandas, you can take column slices (subsets of columns) from a DataFrame by indexing or selecting the specific columns you want. You can do this in several ways:

  1. Using Column Labels:

    You can use the column labels (names) to select specific columns. You can use a list of column labels to slice columns from the DataFrame.

    import pandas as pd data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]} df = pd.DataFrame(data) # Select columns 'B' and 'C' column_slice = df[['B', 'C']] 
  2. Using .loc or .iloc Indexing:

    You can also use the .loc or .iloc indexer to select specific columns by label or integer location, respectively.

    • Using .loc by label:

      column_slice = df.loc[:, 'B':'C'] # Select columns from 'B' to 'C' (inclusive) 
    • Using .iloc by integer location:

      column_slice = df.iloc[:, 1:3] # Select columns from integer location 1 to 2 (exclusive) 
  3. Using .filter Method:

    The .filter() method allows you to select columns based on specific criteria, such as column names containing certain substrings.

    column_slice = df.filter(like='col') # Select columns with names containing 'col' 
  4. Using .loc with a List of Column Labels:

    You can use .loc with a list of column labels to select specific columns by label.

    column_slice = df.loc[:, ['B', 'C']] 
  5. Using List Comprehension:

    You can use a list comprehension to select columns based on specific criteria or conditions.

    column_slice = df[[col for col in df.columns if col.startswith('B')]] 
  6. Using .xs Method:

    The .xs() method allows you to select columns or rows by label and axis.

    column_slice = df.xs('B', axis=1) 

Choose the method that best fits your specific use case and requirements for selecting column slices from your Pandas DataFrame.

Examples

  1. How to take the first 5 columns of a DataFrame in pandas?

    • Description: You can use DataFrame slicing to extract the first 5 columns.
    • Code:
      df_first_five_columns = df.iloc[:, :5] 
  2. How to select specific columns in a DataFrame in pandas?

    • Description: Use DataFrame indexing to select the desired columns.
    • Code:
      desired_columns = ['column1', 'column2', 'column3'] df_selected_columns = df[desired_columns] 
  3. How to slice columns by index range in pandas DataFrame?

    • Description: Utilize DataFrame indexing with column range to slice columns.
    • Code:
      df_sliced_columns = df.iloc[:, 2:5] # Slices columns from index 2 to 4 
  4. How to take every nth column from a pandas DataFrame?

    • Description: Use DataFrame indexing with step size to select columns.
    • Code:
      n = 3 # Replace with desired step size df_every_nth_column = df.iloc[:, ::n] 
  5. How to extract columns by name pattern matching in pandas?

    • Description: Employ DataFrame filtering with column names containing a specific pattern.
    • Code:
      import re pattern = re.compile('^prefix') # Replace 'prefix' with your desired pattern matching_columns = [col for col in df.columns if pattern.match(col)] df_matched_columns = df[matching_columns] 
  6. How to remove specific columns from a DataFrame in pandas?

    • Description: Use DataFrame dropping to exclude specified columns.
    • Code:
      columns_to_remove = ['column_to_remove1', 'column_to_remove2'] df_subset = df.drop(columns=columns_to_remove) 
  7. How to take a random sample of columns from a DataFrame in pandas?

    • Description: Utilize DataFrame sampling to select a random subset of columns.
    • Code:
      import numpy as np num_columns = 3 # Number of columns to sample random_columns = np.random.choice(df.columns, size=num_columns, replace=False) df_random_sample = df[random_columns] 
  8. How to take the last 3 columns of a DataFrame in pandas?

    • Description: Use DataFrame slicing to extract the last 3 columns.
    • Code:
      df_last_three_columns = df.iloc[:, -3:] 
  9. How to slice DataFrame columns based on specific column names in pandas?

    • Description: Use DataFrame indexing with column names to select columns.
    • Code:
      selected_columns = df.loc[:, 'start_column':'end_column'] # Replace 'start_column' and 'end_column' with desired column names 
  10. How to take columns in reverse order from a DataFrame in pandas?

    • Description: Use DataFrame slicing with negative step size to reverse the order of columns.
    • Code:
      df_reverse_columns = df.iloc[:, ::-1] 

More Tags

ntp angular-fullstack retrofit datetime group-policy validationerror textbox qdialog http-proxy strtotime

More Python Questions

More Livestock Calculators

More Auto Calculators

More Math Calculators

More Genetics Calculators