How to apply a function on every row on a dataframe in python?

How to apply a function on every row on a dataframe in python?

To apply a function to every row in a Pandas DataFrame in Python, you can use the apply() function along with the axis parameter set to 1. This allows you to apply a custom function to each row of the DataFrame. Here's how you can do it:

Suppose you have a DataFrame named df, and you want to apply a function my_function() to each row:

import pandas as pd # Sample DataFrame data = {'Column1': [1, 2, 3], 'Column2': [4, 5, 6]} df = pd.DataFrame(data) # Define the function to apply to each row def my_function(row): # Example: Sum the values in each row return row['Column1'] + row['Column2'] # Apply the function to each row df['Result'] = df.apply(my_function, axis=1) print(df) 

Output:

 Column1 Column2 Result 0 1 4 5 1 2 5 7 2 3 6 9 

In this example, the my_function() is applied to each row of the DataFrame using the apply() function with axis=1. The Result column is created to store the result of the function applied to each row.

You can replace my_function() with your custom function and modify the logic based on your requirements.

Examples

  1. Applying a function to each row in a Pandas DataFrame in Python

    • Description: This query likely seeks a method to apply a custom function to each row of a DataFrame in Python using Pandas.
    import pandas as pd # Example DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) # Custom function to apply def my_function(row): return row['A'] + row['B'] # Apply function to each row df['result'] = df.apply(my_function, axis=1) 
  2. How to iterate over rows in a Pandas DataFrame and apply a function in Python

    • Description: This query may be looking for a method to iterate over rows in a DataFrame and apply a function to each row.
    import pandas as pd # Example DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) # Custom function to apply def my_function(row): return row['A'] + row['B'] # Iterate over rows and apply function df['result'] = [my_function(row) for index, row in df.iterrows()] 
  3. Applying a lambda function to each row in a Pandas DataFrame in Python

    • Description: This query might be interested in applying a lambda function to each row of a DataFrame in Pandas.
    import pandas as pd # Example DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) # Apply lambda function to each row df['result'] = df.apply(lambda row: row['A'] + row['B'], axis=1) 
  4. How to apply a numpy function to each row in a Pandas DataFrame in Python

    • Description: This query may seek information on applying a NumPy function to each row of a DataFrame in Pandas.
    import pandas as pd import numpy as np # Example DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) # Apply NumPy function to each row df['result'] = np.sum(df[['A', 'B']], axis=1) 
  5. Applying a custom function to each row in a Pandas DataFrame and creating a new column

    • Description: This query may be interested in applying a custom function to each row of a DataFrame in Pandas and adding the result as a new column.
    import pandas as pd # Example DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) # Custom function to apply def my_function(row): return row['A'] + row['B'] # Apply function to each row and create a new column df['result'] = df.apply(my_function, axis=1) 
  6. How to apply a function row-wise on a DataFrame in Pandas

    • Description: This query may be looking for a method to apply a function row-wise on a DataFrame using Pandas.
    import pandas as pd # Example DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) # Custom function to apply row-wise def my_function(row): return row['A'] + row['B'] # Apply function row-wise df['result'] = df.apply(my_function, axis=1) 
  7. Applying a function element-wise to each row in a Pandas DataFrame in Python

    • Description: This query may seek information on applying a function element-wise to each row of a DataFrame in Pandas.
    import pandas as pd # Example DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) # Custom function to apply element-wise def my_function(a, b): return a + b # Apply function element-wise to each row df['result'] = my_function(df['A'], df['B']) 
  8. How to apply a function to every row in a Pandas DataFrame and store the result in a new column

    • Description: This query may be looking for a way to apply a function to every row in a DataFrame in Pandas and store the result in a new column.
    import pandas as pd # Example DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) # Custom function to apply def my_function(row): return row['A'] + row['B'] # Apply function to every row and store result in a new column df['result'] = df.apply(my_function, axis=1) 
  9. Applying a function to each row in a Pandas DataFrame using list comprehension

    • Description: This query might be interested in applying a function to each row of a DataFrame in Pandas using list comprehension.
    import pandas as pd # Example DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) # Custom function to apply def my_function(row): return row['A'] + row['B'] # Apply function to each row using list comprehension df['result'] = [my_function(row) for index, row in df.iterrows()] 
  10. How to apply a function to every row in a Pandas DataFrame using map function

    • Description: This query may be seeking a method to apply a function to every row in a DataFrame in Pandas using the map function.
    import pandas as pd # Example DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) # Custom function to apply def my_function(row): return row['A'] + row['B'] # Apply function to every row using map function df['result'] = list(map(my_function, [row for index, row in df.iterrows()])) 

More Tags

fasta gridfs point-clouds camelcasing sap-commerce-cloud implode epmd packaging oncreate encryption

More Python Questions

More Financial Calculators

More Chemistry Calculators

More Pregnancy Calculators

More Gardening and crops Calculators