Track progress when using TPL's Parallel.ForEach

Track progress when using TPL's Parallel.ForEach

When using TPL's Parallel.ForEach method to process a large collection in parallel, you can track the progress of the operation by using a combination of a shared int counter and a lock statement.

Here's an example of how to do this:

int processedCount = 0; object processedCountLock = new object(); Parallel.ForEach(items, item => { // Process the item // ... // Increment the processed count lock (processedCountLock) { processedCount++; } }); 

In this example, we've created a shared int variable called processedCount and an object called processedCountLock to synchronize access to it. We then use Parallel.ForEach to process each item in the items collection, and increment the processedCount variable inside a lock statement to ensure that multiple threads don't try to modify it at the same time.

You can also use the ParallelLoopState object that is passed to the Parallel.ForEach delegate to monitor the progress of the operation and potentially cancel it if needed. Here's an example:

int totalCount = items.Count(); int processedCount = 0; Parallel.ForEach(items, (item, state, index) => { // Process the item // ... // Increment the processed count Interlocked.Increment(ref processedCount); // Check if we've processed all items if (processedCount == totalCount) { // We're done processing all items } }); 

In this example, we've created a shared int variable called totalCount to store the total number of items, and a processedCount variable to store the number of items that have been processed so far. We use the Interlocked.Increment method to increment the processedCount variable in a thread-safe manner.

We also use the index parameter of the Parallel.ForEach delegate to determine the index of the current item being processed. We can use this index to estimate the progress of the operation by dividing the processedCount by the totalCount. For example:

double progress = (double)processedCount / totalCount; 

If you need to cancel the operation based on some condition, you can use the state.Break() method to cancel the operation early. For example:

Parallel.ForEach(items, (item, state, index) => { // Check if we need to cancel the operation if (someCondition) { state.Break(); return; } // Process the item // ... }); 

In this example, we've added a check to see if we need to cancel the operation based on someCondition. If we do need to cancel the operation, we call state.Break() to cancel it early.

Examples

  1. "Track progress Parallel.ForEach C#"

    • Description: Explore methods to track progress when using TPL's Parallel.ForEach in C#. Learn to use the ParallelLoopState and Progress class to monitor and report progress.
    // Code for tracking progress in Parallel.ForEach in C# var data = Enumerable.Range(1, 1000).ToArray(); Parallel.ForEach(data, (item, state, index) => { // Process item here // Report progress double progress = (index + 1) / (double)data.Length * 100; Console.WriteLine($"Progress: {progress}%"); }); 
  2. "Parallel.ForEach progress bar C#"

    • Description: Implement a progress bar while using Parallel.ForEach in C#. Utilize a shared variable or a thread-safe collection to store progress information and update the UI accordingly.
    // Code for progress bar with Parallel.ForEach in C# var data = Enumerable.Range(1, 1000).ToArray(); object progressLock = new object(); int completedCount = 0; Parallel.ForEach(data, item => { // Process item here // Increment completed count in a thread-safe manner lock (progressLock) { completedCount++; double progress = (completedCount / (double)data.Length) * 100; // Update progress bar UI or log progress Console.WriteLine($"Progress: {progress}%"); } }); 
  3. "TPL Parallel.ForEach with CancellationToken progress"

    • Description: Learn how to incorporate a CancellationToken to gracefully handle cancellation while tracking progress in a Parallel.ForEach loop in C#.
    // Code for Parallel.ForEach with CancellationToken and progress in C# var data = Enumerable.Range(1, 1000).ToArray(); CancellationTokenSource cts = new CancellationTokenSource(); Parallel.ForEach(data, new ParallelOptions { CancellationToken = cts.Token }, item => { // Process item here // Check for cancellation if (cts.Token.IsCancellationRequested) return; // Report progress double progress = (Parallel.ForEach(data, i => { }) / (double)data.Length) * 100; Console.WriteLine($"Progress: {progress}%"); }); 
  4. "TPL Parallel.ForEach exception handling and progress"

    • Description: Discover how to handle exceptions gracefully while tracking progress in a Parallel.ForEach loop in C#. Implement exception handling and progress reporting within the loop.
    // Code for Parallel.ForEach with exception handling and progress in C# var data = Enumerable.Range(1, 1000).ToArray(); try { Parallel.ForEach(data, item => { // Process item here // Report progress double progress = (Parallel.ForEach(data, i => { }) / (double)data.Length) * 100; Console.WriteLine($"Progress: {progress}%"); }); } catch (AggregateException ex) { // Handle exceptions here } 
  5. "Track Parallel.ForEach completion status in C#"

    • Description: Learn how to track the completion status of Parallel.ForEach in C#. Use a shared variable or a signaling mechanism to determine when the parallel loop has completed.
    // Code for tracking Parallel.ForEach completion status in C# var data = Enumerable.Range(1, 1000).ToArray(); bool isCompleted = false; Parallel.ForEach(data, item => { // Process item here }, () => // Action executed when each partition completes { // Set completion status in a thread-safe manner Interlocked.Exchange(ref isCompleted, true); }); // Wait for completion elsewhere if needed while (!isCompleted) { // Wait or perform other tasks } 
  6. "TPL Parallel.ForEach with custom progress report C#"

    • Description: Implement a custom progress reporting mechanism for Parallel.ForEach in C#. Define a custom progress class and update it within the loop for more detailed progress tracking.
    // Code for Parallel.ForEach with custom progress reporting in C# var data = Enumerable.Range(1, 1000).ToArray(); var customProgress = new CustomProgress(); Parallel.ForEach(data, item => { // Process item here // Report progress using custom progress class customProgress.ReportProgress(item); }); // Access detailed progress information from custom progress class double overallProgress = customProgress.GetOverallProgress(); 
  7. "TPL Parallel.ForEach with timeout and progress tracking C#"

    • Description: Learn how to set a timeout for Parallel.ForEach in C# while tracking progress. Utilize a combination of a timeout mechanism and progress reporting.
    // Code for Parallel.ForEach with timeout and progress tracking in C# var data = Enumerable.Range(1, 1000).ToArray(); var timeoutMilliseconds = 5000; var cts = new CancellationTokenSource(timeoutMilliseconds); Parallel.ForEach(data, new ParallelOptions { CancellationToken = cts.Token }, item => { // Process item here // Report progress double progress = (Parallel.ForEach(data, i => { }) / (double)data.Length) * 100; Console.WriteLine($"Progress: {progress}%"); }); 
  8. "Parallel.ForEach dynamic workload and progress tracking C#"

    • Description: Implement dynamic workload distribution in Parallel.ForEach in C# and track progress accordingly. Adjust the workload based on the progress to optimize performance.
    // Code for dynamic workload and progress tracking in Parallel.ForEach in C# var data = Enumerable.Range(1, 1000).ToArray(); Parallel.ForEach(data, (item, state, index) => { // Process item here // Adjust workload dynamically based on progress int workload = CalculateDynamicWorkload(item, index); Parallel.ForEach(Enumerable.Range(1, workload), i => { }); }); 
  9. "TPL Parallel.ForEach with multiple progress indicators C#"

    • Description: Learn how to track multiple progress indicators simultaneously in Parallel.ForEach in C#. Utilize multiple progress variables or a composite progress class to monitor various aspects of progress.
    // Code for Parallel.ForEach with multiple progress indicators in C# var data = Enumerable.Range(1, 1000).ToArray(); int totalProgress = 0; int subProgress = 0; Parallel.ForEach(data, item => { // Process item here // Update total progress Interlocked.Increment(ref totalProgress); // Update sub-progress for additional tracking Interlocked.Increment(ref subProgress); }); 
  10. "TPL Parallel.ForEach with progress and result aggregation C#"

    • Description: Explore how to aggregate results and track progress simultaneously in Parallel.ForEach in C#. Use the ConcurrentBag or other thread-safe collections to aggregate results.
    // Code for Parallel.ForEach with progress and result aggregation in C# var data = Enumerable.Range(1, 1000).ToArray(); var results = new ConcurrentBag<int>(); Parallel.ForEach(data, item => { // Process item here // Aggregate results results.Add(ProcessAndGetResult(item)); // Report progress double progress = (results.Count / (double)data.Length) * 100; Console.WriteLine($"Progress: {progress}%"); }); // Access aggregated results var finalResult = results.ToList(); 

More Tags

spring-web fscalendar sbt history.js angular-filters locking autocad pm2 web-frontend casing

More C# Questions

More Math Calculators

More Physical chemistry Calculators

More Financial Calculators

More Geometry Calculators