@@ -1805,6 +1805,7 @@ def run(
18051805 service_account : Optional [str ] = None ,
18061806 bigquery_destination : Optional [str ] = None ,
18071807 args : Optional [List [Union [str , float , int ]]] = None ,
1808+ environment_variables : Optional [Dict [str , str ]] = None ,
18081809 replica_count : int = 0 ,
18091810 machine_type : str = "n1-standard-4" ,
18101811 accelerator_type : str = "ACCELERATOR_TYPE_UNSPECIFIED" ,
@@ -1880,6 +1881,13 @@ def run(
18801881 base_output_dir (str):
18811882 GCS output directory of job. If not provided a
18821883 timestamped directory in the staging directory will be used.
1884+
1885+ AI Platform sets the following environment variables when it runs your training code:
1886+
1887+ - AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
1888+ - AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
1889+ - AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
1890+
18831891 service_account (str):
18841892 Specifies the service account for workload run-as account.
18851893 Users submitting jobs must have act-as permission on this run-as account.
@@ -1900,6 +1908,16 @@ def run(
19001908 - AIP_TEST_DATA_URI = "bigquery_destination.dataset_*.test"
19011909 args (List[Unions[str, int, float]]):
19021910 Command line arguments to be passed to the Python script.
1911+ environment_variables (Dict[str, str]):
1912+ Environment variables to be passed to the container.
1913+ Should be a dictionary where keys are environment variable names
1914+ and values are environment variable values for those names.
1915+ At most 10 environment variables can be specified.
1916+ The Name of the environment variable must be unique.
1917+
1918+ environment_variables = {
1919+ 'MY_KEY': 'MY_VALUE'
1920+ }
19031921 replica_count (int):
19041922 The number of worker replicas. If replica count = 1 then one chief
19051923 replica will be provisioned. If replica_count > 1 the remainder will be
@@ -1960,6 +1978,7 @@ def run(
19601978 worker_pool_specs = worker_pool_specs ,
19611979 managed_model = managed_model ,
19621980 args = args ,
1981+ environment_variables = environment_variables ,
19631982 base_output_dir = base_output_dir ,
19641983 service_account = service_account ,
19651984 bigquery_destination = bigquery_destination ,
@@ -1986,6 +2005,7 @@ def _run(
19862005 worker_pool_specs : _DistributedTrainingSpec ,
19872006 managed_model : Optional [gca_model .Model ] = None ,
19882007 args : Optional [List [Union [str , float , int ]]] = None ,
2008+ environment_variables : Optional [Dict [str , str ]] = None ,
19892009 base_output_dir : Optional [str ] = None ,
19902010 service_account : Optional [str ] = None ,
19912011 bigquery_destination : Optional [str ] = None ,
@@ -2018,9 +2038,26 @@ def _run(
20182038 Model proto if this script produces a Managed Model.
20192039 args (List[Unions[str, int, float]]):
20202040 Command line arguments to be passed to the Python script.
2041+ environment_variables (Dict[str, str]):
2042+ Environment variables to be passed to the container.
2043+ Should be a dictionary where keys are environment variable names
2044+ and values are environment variable values for those names.
2045+ At most 10 environment variables can be specified.
2046+ The Name of the environment variable must be unique.
2047+
2048+ environment_variables = {
2049+ 'MY_KEY': 'MY_VALUE'
2050+ }
20212051 base_output_dir (str):
20222052 GCS output directory of job. If not provided a
20232053 timestamped directory in the staging directory will be used.
2054+
2055+ AI Platform sets the following environment variables when it runs your training code:
2056+
2057+ - AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
2058+ - AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
2059+ - AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
2060+
20242061 service_account (str):
20252062 Specifies the service account for workload run-as account.
20262063 Users submitting jobs must have act-as permission on this run-as account.
@@ -2083,6 +2120,9 @@ def _run(
20832120 if args :
20842121 spec ["pythonPackageSpec" ]["args" ] = args
20852122
2123+ if environment_variables :
2124+ spec ["pythonPackageSpec" ]["env" ] = environment_variables
2125+
20862126 (
20872127 training_task_inputs ,
20882128 base_output_dir ,
@@ -2334,6 +2374,7 @@ def run(
23342374 service_account : Optional [str ] = None ,
23352375 bigquery_destination : Optional [str ] = None ,
23362376 args : Optional [List [Union [str , float , int ]]] = None ,
2377+ environment_variables : Optional [Dict [str , str ]] = None ,
23372378 replica_count : int = 0 ,
23382379 machine_type : str = "n1-standard-4" ,
23392380 accelerator_type : str = "ACCELERATOR_TYPE_UNSPECIFIED" ,
@@ -2402,6 +2443,13 @@ def run(
24022443 base_output_dir (str):
24032444 GCS output directory of job. If not provided a
24042445 timestamped directory in the staging directory will be used.
2446+
2447+ AI Platform sets the following environment variables when it runs your training code:
2448+
2449+ - AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
2450+ - AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
2451+ - AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
2452+
24052453 service_account (str):
24062454 Specifies the service account for workload run-as account.
24072455 Users submitting jobs must have act-as permission on this run-as account.
@@ -2422,6 +2470,16 @@ def run(
24222470 - AIP_TEST_DATA_URI = "bigquery_destination.dataset_*.test"
24232471 args (List[Unions[str, int, float]]):
24242472 Command line arguments to be passed to the Python script.
2473+ environment_variables (Dict[str, str]):
2474+ Environment variables to be passed to the container.
2475+ Should be a dictionary where keys are environment variable names
2476+ and values are environment variable values for those names.
2477+ At most 10 environment variables can be specified.
2478+ The Name of the environment variable must be unique.
2479+
2480+ environment_variables = {
2481+ 'MY_KEY': 'MY_VALUE'
2482+ }
24252483 replica_count (int):
24262484 The number of worker replicas. If replica count = 1 then one chief
24272485 replica will be provisioned. If replica_count > 1 the remainder will be
@@ -2481,6 +2539,7 @@ def run(
24812539 worker_pool_specs = worker_pool_specs ,
24822540 managed_model = managed_model ,
24832541 args = args ,
2542+ environment_variables = environment_variables ,
24842543 base_output_dir = base_output_dir ,
24852544 service_account = service_account ,
24862545 bigquery_destination = bigquery_destination ,
@@ -2506,6 +2565,7 @@ def _run(
25062565 worker_pool_specs : _DistributedTrainingSpec ,
25072566 managed_model : Optional [gca_model .Model ] = None ,
25082567 args : Optional [List [Union [str , float , int ]]] = None ,
2568+ environment_variables : Optional [Dict [str , str ]] = None ,
25092569 base_output_dir : Optional [str ] = None ,
25102570 service_account : Optional [str ] = None ,
25112571 bigquery_destination : Optional [str ] = None ,
@@ -2535,9 +2595,26 @@ def _run(
25352595 Model proto if this script produces a Managed Model.
25362596 args (List[Unions[str, int, float]]):
25372597 Command line arguments to be passed to the Python script.
2598+ environment_variables (Dict[str, str]):
2599+ Environment variables to be passed to the container.
2600+ Should be a dictionary where keys are environment variable names
2601+ and values are environment variable values for those names.
2602+ At most 10 environment variables can be specified.
2603+ The Name of the environment variable must be unique.
2604+
2605+ environment_variables = {
2606+ 'MY_KEY': 'MY_VALUE'
2607+ }
25382608 base_output_dir (str):
25392609 GCS output directory of job. If not provided a
25402610 timestamped directory in the staging directory will be used.
2611+
2612+ AI Platform sets the following environment variables when it runs your training code:
2613+
2614+ - AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
2615+ - AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
2616+ - AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
2617+
25412618 service_account (str):
25422619 Specifies the service account for workload run-as account.
25432620 Users submitting jobs must have act-as permission on this run-as account.
@@ -2593,6 +2670,9 @@ def _run(
25932670 if args :
25942671 spec ["containerSpec" ]["args" ] = args
25952672
2673+ if environment_variables :
2674+ spec ["containerSpec" ]["env" ] = environment_variables
2675+
25962676 (
25972677 training_task_inputs ,
25982678 base_output_dir ,
@@ -3625,6 +3705,7 @@ def run(
36253705 service_account : Optional [str ] = None ,
36263706 bigquery_destination : Optional [str ] = None ,
36273707 args : Optional [List [Union [str , float , int ]]] = None ,
3708+ environment_variables : Optional [Dict [str , str ]] = None ,
36283709 replica_count : int = 0 ,
36293710 machine_type : str = "n1-standard-4" ,
36303711 accelerator_type : str = "ACCELERATOR_TYPE_UNSPECIFIED" ,
@@ -3693,6 +3774,13 @@ def run(
36933774 base_output_dir (str):
36943775 GCS output directory of job. If not provided a
36953776 timestamped directory in the staging directory will be used.
3777+
3778+ AI Platform sets the following environment variables when it runs your training code:
3779+
3780+ - AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
3781+ - AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
3782+ - AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
3783+
36963784 service_account (str):
36973785 Specifies the service account for workload run-as account.
36983786 Users submitting jobs must have act-as permission on this run-as account.
@@ -3713,6 +3801,16 @@ def run(
37133801 - AIP_TEST_DATA_URI = "bigquery_destination.dataset_*.test"
37143802 args (List[Unions[str, int, float]]):
37153803 Command line arguments to be passed to the Python script.
3804+ environment_variables (Dict[str, str]):
3805+ Environment variables to be passed to the container.
3806+ Should be a dictionary where keys are environment variable names
3807+ and values are environment variable values for those names.
3808+ At most 10 environment variables can be specified.
3809+ The Name of the environment variable must be unique.
3810+
3811+ environment_variables = {
3812+ 'MY_KEY': 'MY_VALUE'
3813+ }
37163814 replica_count (int):
37173815 The number of worker replicas. If replica count = 1 then one chief
37183816 replica will be provisioned. If replica_count > 1 the remainder will be
@@ -3767,6 +3865,7 @@ def run(
37673865 worker_pool_specs = worker_pool_specs ,
37683866 managed_model = managed_model ,
37693867 args = args ,
3868+ environment_variables = environment_variables ,
37703869 base_output_dir = base_output_dir ,
37713870 service_account = service_account ,
37723871 training_fraction_split = training_fraction_split ,
@@ -3792,6 +3891,7 @@ def _run(
37923891 worker_pool_specs : _DistributedTrainingSpec ,
37933892 managed_model : Optional [gca_model .Model ] = None ,
37943893 args : Optional [List [Union [str , float , int ]]] = None ,
3894+ environment_variables : Optional [Dict [str , str ]] = None ,
37953895 base_output_dir : Optional [str ] = None ,
37963896 service_account : Optional [str ] = None ,
37973897 training_fraction_split : float = 0.8 ,
@@ -3822,9 +3922,26 @@ def _run(
38223922 Model proto if this script produces a Managed Model.
38233923 args (List[Unions[str, int, float]]):
38243924 Command line arguments to be passed to the Python script.
3925+ environment_variables (Dict[str, str]):
3926+ Environment variables to be passed to the container.
3927+ Should be a dictionary where keys are environment variable names
3928+ and values are environment variable values for those names.
3929+ At most 10 environment variables can be specified.
3930+ The Name of the environment variable must be unique.
3931+
3932+ environment_variables = {
3933+ 'MY_KEY': 'MY_VALUE'
3934+ }
38253935 base_output_dir (str):
38263936 GCS output directory of job. If not provided a
38273937 timestamped directory in the staging directory will be used.
3938+
3939+ AI Platform sets the following environment variables when it runs your training code:
3940+
3941+ - AIP_MODEL_DIR: a Cloud Storage URI of a directory intended for saving model artifacts, i.e. <base_output_dir>/model/
3942+ - AIP_CHECKPOINT_DIR: a Cloud Storage URI of a directory intended for saving checkpoints, i.e. <base_output_dir>/checkpoints/
3943+ - AIP_TENSORBOARD_LOG_DIR: a Cloud Storage URI of a directory intended for saving TensorBoard logs, i.e. <base_output_dir>/logs/
3944+
38283945 service_account (str):
38293946 Specifies the service account for workload run-as account.
38303947 Users submitting jobs must have act-as permission on this run-as account.
@@ -3866,6 +3983,9 @@ def _run(
38663983 if args :
38673984 spec ["pythonPackageSpec" ]["args" ] = args
38683985
3986+ if environment_variables :
3987+ spec ["pythonPackageSpec" ]["env" ] = environment_variables
3988+
38693989 (
38703990 training_task_inputs ,
38713991 base_output_dir ,
0 commit comments