Open In App

Subset sum queries using bitset

Last Updated : 20 Mar, 2024
Suggest changes
Share
Like Article
Like
Report

Given an array arr[] and a number of queries, where in each query we have to check whether a subset whose sum is equal to given number exists in the array or not. 

Examples:

Input : arr[] = {1, 2, 3};
query[] = {5, 3, 8}
Output : Yes, Yes, No
There is a subset with sum 5, subset is {2, 3}
There is a subset with sum 3, subset is {1, 2}
There is no subset with sum 8.
Input : arr[] = {4, 1, 5};
query[] = {7, 9}
Output : No, Yes
There is no subset with sum 7.
There is a subset with sum 9, subset is {4, 5}

The idea is to use bitset container in C++. Using bitset, we can precalculate the existence all the subset sums in an array in O(n) and answer subsequent queries in just O(1). We basically use an array of bits bit[] to represent the subset sum of elements in the array. Size of bit[] should be at least sum of all array elements plus 1 to answer all queries. We keep of bit[x] as 1 if x is a subset sum of given array, else false. Note that indexing is assumed to begin with 0.

For every element arr[i] of input array,
we do following
// bit[x] will be 1 if x is a subset
// sum of arr[], else 0
bit = bit | (bit << arr[i])

How does this work?

Let us consider arr[] = {3, 1, 5}, we need 
to whether a subset sum of x exists or not,
where 0 ? x ? ?arri.
We create a bitset bit[10] and reset all the
bits to 0, i.e., we make it 0000000000.
Set the 0th bit, because a subset sum of 0
exists in every array.
Now, the bit array is 0000000001
Apply the above technique for all the elements
of the array :
Current bitset = 0000000001
After doing "bit = bit | (bit << 3)",
bitset becomes 0000001001
After doing "bit | (bit << 1)",
bitset becomes 0000011011
After doing "bit | (bit << 5)",
bitset becomes 1101111011

Finally, we have the bit array as 1101111011, so, if bit[x] is 1 then a subset sum of x exists otherwise not. We can clearly observe that a subset sum of all the numbers from 0 to 9 except 2 and 7 exists in the array. 

Implementation:

CPP
// C++ program to answer subset sum queries using bitset  #include <bits/stdc++.h>  using namespace std;  // Maximum allowed query value  # define MAXSUM 10000  // function to check whether a subset sum equal to n  // exists in the array or not.  void processQueries(int query[], int nq, bitset<MAXSUM> bit)  {   // One by one process subset sum queries   for (int i=0; i<nq; i++)   {   int x = query[i];   // If x is beyond size of bit[]   if (x >= MAXSUM)   {   cout << "NA, ";   continue;   }   // Else if x is a subset sum, then x'th bit   // must be set   bit[x]? cout << "Yes, " : cout << "No, ";   }  }  // function to store all the subset sums in bit vector  void preprocess(bitset<MAXSUM> &bit, int arr[], int n)  {   // set all the bits to 0   bit.reset();   // set the 0th bit because subset sum of 0 exists   bit[0] = 1;   // Process all array elements one by one   for (int i = 0; i < n; ++i)   // Do OR of following two   // 1) All previous sums. We keep previous value   // of bit.   // 2) arr[i] added to every previous sum. We   // move all previous indexes arr[i] ahead.   bit |= (bit << arr[i]);  }  // Driver program  int main()  {   int arr[] = {3, 1, 5};   int query[] = {8, 7};   int n = sizeof(arr) / sizeof(arr[0]);   int nq = sizeof(query) / sizeof(query[0]);   // a vector of MAXSUM number of bits   bitset<MAXSUM> bit;   preprocess(bit, arr, n);   processQueries(query, nq, bit);   return 0;  }  
Java
import java.util.BitSet; public class SubsetSumQueries {  // Maximum allowed query value   static final int MAXSUM = 10000;  // function to check whether a subset sum equal to n   // exists in the array or not.  static void processQueries(int[] query, int nq, BitSet bit) {  // One by one process subset sum queries   for (int i = 0; i < nq; i++) {  int x = query[i];  // If x is beyond size of bit[]  if (x >= MAXSUM) {  System.out.print("NA, ");  continue;  }  // Else if x is a subset sum, then x'th bit   // must be set   System.out.print(bit.get(x) ? "Yes, " : "No, ");  }  } static void preprocess(BitSet bit, int[] arr, int n) {  // Set the 0th bit because subset sum of 0 exists  bit.set(0);  // Process all array elements one by one  for (int i = 0; i < n; ++i) {  // Do OR of following two  // 1) All previous sums. We keep previous value  // of bit.  // 2) arr[i] added to every previous sum. We  // move all previous indexes arr[i] ahead.  for (int j = MAXSUM - arr[i] - 1; j >= 0; j--) {  if (bit.get(j)) {  bit.set(j + arr[i]);  }  }  bit.set(arr[i]);  } }  // Driver program   public static void main(String[] args) {  int[] arr = {3, 1, 5};  int[] query = {8, 7};  int n = arr.length;  int nq = query.length;  // a bit vector   BitSet bit = new BitSet(MAXSUM);  preprocess(bit, arr, n);  processQueries(query, nq, bit);  } } 
C#
using System; using System.Collections; public class SubsetSumQueries {  // Maximum allowed query value   const int MAXSUM = 10000;  // function to check whether a subset sum equal to n   // exists in the array or not.  static void processQueries(int[] query, int nq, BitArray bit)  {  // One by one process subset sum queries   for (int i = 0; i < nq; i++)  {  int x = query[i];  // If x is beyond size of bit[]  if (x >= MAXSUM)  {  Console.Write("NA, ");  continue;  }  // Else if x is a subset sum, then x'th bit   // must be set   Console.Write(bit[x] ? "Yes, " : "No, ");  }  }  static void preprocess(BitArray bit, int[] arr, int n)  {  // Set the 0th bit because subset sum of 0 exists  bit.Set(0, true);  // Process all array elements one by one  for (int i = 0; i < n; i++)  {  // Do OR of following two  // 1) All previous sums. We keep previous value  // of bit.  // 2) arr[i] added to every previous sum. We  // move all previous indexes arr[i] ahead.  for (int j = MAXSUM - arr[i] - 1; j >= 0; j--)  {  if (bit.Get(j))  {  bit.Set(j + arr[i], true);  }  }  bit.Set(arr[i], true);  }  }  // Driver program   public static void Main(string[] args)  {  int[] arr = { 3, 1, 5 };  int[] query = { 8, 7 };  int n = arr.Length;  int nq = query.Length;  // a bit vector   BitArray bit = new BitArray(MAXSUM);  preprocess(bit, arr, n);  processQueries(query, nq, bit);  } } 
JavaScript
// JavaScript program to answer subset sum queries using bitset // Maximum allowed query value const MAXSUM = 10000; // function to check whether a subset sum equal to n // exists in the array or not. function processQueries(query, nq, bit) {  let output = "";  for (let i = 0; i < nq; i++) {  const x = query[i];  if (x >= MAXSUM) {  output += "NA, ";  continue;  }  bit[x] ? output += "Yes, " : output += "No, ";  }  console.log(output.slice(0, -2)); } // function to store all the subset sums in bit vector function preprocess(bit, arr, n) {  // set all the bits to 0  for (let i = 0; i < MAXSUM; i++) {  bit[i] = false;  }  // set the 0th bit because subset sum of 0 exists  bit[0] = true;  // Process all array elements one by one  for (let i = 0; i < n; i++) {  // Do OR of following two  // 1) All previous sums. We keep previous value  // of bit.  // 2) arr[i] added to every previous sum. We  // move all previous indexes arr[i] ahead.  for (let j = MAXSUM - 1; j >= arr[i]; j--) {  bit[j] = bit[j] || bit[j - arr[i]];  }  } } // Driver program function main() {  const arr = [3, 1, 5];  const query = [8, 7];  const n = arr.length;  const nq = query.length;  // a vector of MAXSUM number of bits  const bit = new Array(MAXSUM);  preprocess(bit, arr, n);  processQueries(query, nq, bit); } main(); 
Python3
# Maximum allowed query value MAXSUM = 10000 # function to check whether a subset sum equal to n # exists in the array or not. def processQueries(query, nq, bit): # One by one process subset sum queries for i in range(nq): x = query[i] # If x is beyond size of bit[] if x >= MAXSUM: print("NA, ", end="") continue # Else if x is a subset sum, then x'th bit # must be set print("Yes, ", end="") print("No, ", end="") print() # function to store all the subset sums in bit vector def preprocess(bit, arr, n): # Process all array elements one by one for i in range(n): # Do OR of following two # 1) All previous sums. We keep previous value # of bit. # 2) arr[i] added to every previous sum. We # move all previous indexes arr[i] ahead. bit |= (bit << arr[i]) # Driver program if __name__ == '__main__': import array arr = array.array('i', [3, 1, 5]) query = array.array('i', [8, 7]) n = len(arr) nq = len(query) # a bit vector bit = 0 preprocess(bit, arr, n) processQueries(query, nq, bit) 

Output
Yes, No, 

Time complexity : O(n * MAX_ELEMENT ) for pre-calculating since left shift operator takes O(q) for p<<q . It takes O(1) for subsequent queries, where n is the number of elements in the array.
Auxiliary Space: O(n)

If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.


Similar Reads

Article Tags :
Practice Tags :