Split an array into two equal Sum subarrays
Last Updated : 11 Jul, 2022
Given an array of integers greater than zero, find if it is possible to split it in two subarrays (without reordering the elements), such that the sum of the two subarrays is the same. Print the two subarrays.
Examples :
Input : Arr[] = { 1 , 2 , 3 , 4 , 5 , 5 } Output : { 1 2 3 4 } { 5 , 5 } Input : Arr[] = { 4, 1, 2, 3 } Output : {4 1} {2 3} Input : Arr[] = { 4, 3, 2, 1} Output : Not Possible
Asked In : Facebook interview
A Simple solution is to run two loop to split array and check it is possible to split array into two parts such that sum of first_part equal to sum of second_part.
Below is the implementation of above idea.
C++ // C++ program to split an array into Two // equal sum subarrays #include<bits/stdc++.h> using namespace std; // Returns split point. If not possible, then // return -1. int findSplitPoint(int arr[], int n) { int leftSum = 0 ; // traverse array element for (int i = 0; i < n; i++) { // add current element to left Sum leftSum += arr[i] ; // find sum of rest array elements (rightSum) int rightSum = 0 ; for (int j = i+1 ; j < n ; j++ ) rightSum += arr[j] ; // split point index if (leftSum == rightSum) return i+1 ; } // if it is not possible to split array into // two parts return -1; } // Prints two parts after finding split point using // findSplitPoint() void printTwoParts(int arr[], int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { cout << "Not Possible" <<endl; return; } for (int i = 0; i < n; i++) { if(splitPoint == i) cout << endl; cout << arr[i] << " " ; } } // driver program int main() { int arr[] = {1 , 2 , 3 , 4 , 5 , 5 }; int n = sizeof(arr)/sizeof(arr[0]); printTwoParts(arr, n); return 0; }
Java // Java program to split an array // into two equal sum subarrays import java.io.*; class GFG { // Returns split point. If // not possible, then return -1. static int findSplitPoint(int arr[], int n) { int leftSum = 0 ; // traverse array element for (int i = 0; i < n; i++) { // add current element to left Sum leftSum += arr[i] ; // find sum of rest array // elements (rightSum) int rightSum = 0 ; for (int j = i+1 ; j < n ; j++ ) rightSum += arr[j] ; // split point index if (leftSum == rightSum) return i+1 ; } // if it is not possible to // split array into two parts return -1; } // Prints two parts after finding // split point using findSplitPoint() static void printTwoParts(int arr[], int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { System.out.println("Not Possible"); return; } for (int i = 0; i < n; i++) { if(splitPoint == i) System.out.println(); System.out.print(arr[i] + " "); } } // Driver program public static void main (String[] args) { int arr[] = {1 , 2 , 3 , 4 , 5 , 5 }; int n = arr.length; printTwoParts(arr, n); } } // This code is contributed by vt_m
Python3 # Python3 program to split an array into Two # equal sum subarrays # Returns split point. If not possible, then # return -1. def findSplitPoint(arr, n) : leftSum = 0 # traverse array element for i in range(0, n) : # add current element to left Sum leftSum += arr[i] # find sum of rest array elements (rightSum) rightSum = 0 for j in range(i+1, n) : rightSum += arr[j] # split point index if (leftSum == rightSum) : return i+1 # if it is not possible to split array into # two parts return -1 # Prints two parts after finding split point using # findSplitPoint() def printTwoParts(arr, n) : splitPo = findSplitPoint(arr, n) if (splitPo == -1 or splitPo == n ) : print ("Not Possible") return for i in range(0, n) : if(splitPo == i) : print ("") print (str(arr[i]) + ' ',end='') # driver program arr = [1 , 2 , 3 , 4 , 5 , 5] n = len(arr) printTwoParts(arr, n) # This code is contributed by Manish Shaw # (manishshaw1)
C# // C# program to split an array // into two equal sum subarrays using System; class GFG { // Returns split point. If // not possible, then return -1. static int findSplitPoint(int []arr, int n) { int leftSum = 0 ; // traverse array element for (int i = 0; i < n; i++) { // add current element to left Sum leftSum += arr[i] ; // find sum of rest array // elements (rightSum) int rightSum = 0 ; for (int j = i+1 ; j < n ; j++ ) rightSum += arr[j] ; // split point index if (leftSum == rightSum) return i+1 ; } // if it is not possible to // split array into two parts return -1; } // Prints two parts after finding // split point using findSplitPoint() static void printTwoParts(int []arr, int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { Console.Write("Not Possible"); return; } for (int i = 0; i < n; i++) { if(splitPoint == i) Console.WriteLine(); Console.Write(arr[i] + " "); } } // Driver program public static void Main () { int []arr = {1 , 2 , 3 , 4 , 5 , 5 }; int n = arr.Length; printTwoParts(arr, n); } } // This code is contributed by nitin mittal
PHP <?php // PHP program to split // an array into Two // equal sum subarrays // Returns split point. // If not possible, then // return -1. function findSplitPoint( $arr, $n) { $leftSum = 0 ; // traverse array element for($i = 0; $i < $n; $i++) { // add current element // to left Sum $leftSum += $arr[$i] ; // find sum of rest array // elements (rightSum) $rightSum = 0 ; for($j = $i + 1 ; $j < $n ; $j++ ) $rightSum += $arr[$j] ; // split point index if ($leftSum == $rightSum) return $i+1 ; } // if it is not possible // to split array into // two parts return -1; } // Prints two parts after // finding split point using // findSplitPoint() function printTwoParts($arr, $n) { $splitPoint = findSplitPoint($arr, $n); if ($splitPoint == -1 or $splitPoint == $n ) { echo "Not Possible" ; return; } for ( $i = 0; $i < $n; $i++) { if($splitPoint == $i) echo "\n"; echo $arr[$i] , " " ; } } // Driver Code $arr = array(1 , 2 , 3 , 4 , 5 , 5); $n = count($arr); printTwoParts($arr, $n); // This code is contributed by anuj_67. ?>
JavaScript <script> // Java script program to split an array // into two equal sum subarrays // Returns split point. If // not possible, then return -1. function findSplitPoint(arr,n) { let leftSum = 0 ; // traverse array element for (let i = 0; i < n; i++) { // add current element to left Sum leftSum += arr[i] ; // find sum of rest array // elements (rightSum) let rightSum = 0 ; for (let j = i+1 ; j < n ; j++ ) rightSum += arr[j] ; // split point index if (leftSum == rightSum) return i+1 ; } // if it is not possible to // split array into two parts return -1; } // Prints two parts after finding // split point using findSplitPoint() function printTwoParts(arr,n) { let splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { document.write("Not Possible"); return; } for (let i = 0; i < n; i++) { if(splitPoint == i) document.write("<br>"); document.write(arr[i] + " "); } } // Driver program let arr = [1 , 2 , 3 , 4 , 5 , 5 ]; let n = arr.length; printTwoParts(arr, n); // contributed by sravan kumar </script>
Time Complexity : O(n2)
Auxiliary Space : O(1)
An Efficient solution is to first compute the sum of the whole array from left to right. Now we traverse array from right and keep track of right sum, left sum can be computed by subtracting current element from whole sum.
Below is the implementation of above idea.
C++ // C++ program to split an array into Two // equal sum subarrays #include<bits/stdc++.h> using namespace std; // Returns split point. If not possible, then // return -1. int findSplitPoint(int arr[], int n) { // traverse array element and compute sum // of whole array int leftSum = 0; for (int i = 0 ; i < n ; i++) leftSum += arr[i]; // again traverse array and compute right sum // and also check left_sum equal to right // sum or not int rightSum = 0; for (int i=n-1; i >= 0; i--) { // add current element to right_sum rightSum += arr[i]; // exclude current element to the left_sum leftSum -= arr[i] ; if (rightSum == leftSum) return i ; } // if it is not possible to split array // into two parts. return -1; } // Prints two parts after finding split point using // findSplitPoint() void printTwoParts(int arr[], int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { cout << "Not Possible" <<endl; return; } for (int i = 0; i < n; i++) { if(splitPoint == i) cout << endl; cout << arr[i] << " " ; } } // driver program int main() { int arr[] = {1 , 2 , 3 , 4 , 5 , 5 }; int n = sizeof(arr)/sizeof(arr[0]); printTwoParts(arr, n); return 0; }
Java // java program to split an array // into Two equal sum subarrays import java.io.*; class GFG { // Returns split point. If not possible, then // return -1. static int findSplitPoint(int arr[], int n) { // traverse array element and compute sum // of whole array int leftSum = 0; for (int i = 0 ; i < n ; i++) leftSum += arr[i]; // again traverse array and compute right // sum and also check left_sum equal to // right sum or not int rightSum = 0; for (int i = n-1; i >= 0; i--) { // add current element to right_sum rightSum += arr[i]; // exclude current element to the left_sum leftSum -= arr[i] ; if (rightSum == leftSum) return i ; } // if it is not possible to split array // into two parts. return -1; } // Prints two parts after finding split // point using findSplitPoint() static void printTwoParts(int arr[], int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { System.out.println("Not Possible" ); return; } for (int i = 0; i < n; i++) { if(splitPoint == i) System.out.println(); System.out.print(arr[i] + " "); } } // Driver program public static void main (String[] args) { int arr[] = {1 , 2 , 3 , 4 , 5 , 5 }; int n = arr.length; printTwoParts(arr, n); } } // This code is contributed by vt_m
Python3 # Python3 program to split # an array into Two # equal sum subarrays # Returns split point. # If not possible, # then return -1. def findSplitPoint(arr, n) : # traverse array element and # compute sum of whole array leftSum = 0 for i in range(0, n) : leftSum += arr[i] # again traverse array and # compute right sum and also # check left_sum equal to # right sum or not rightSum = 0 for i in range(n-1, -1, -1) : # add current element # to right_sum rightSum += arr[i] # exclude current element # to the left_sum leftSum -= arr[i] if (rightSum == leftSum) : return i # if it is not possible # to split array into # two parts. return -1 # Prints two parts after # finding split point # using findSplitPoint() def printTwoParts(arr, n) : splitPoint = findSplitPoint(arr, n) if (splitPoint == -1 or splitPoint == n ) : print ("Not Possible") return for i in range (0, n) : if(splitPoint == i) : print ("") print (arr[i], end = " ") # Driver Code arr = [1, 2, 3, 4, 5, 5] n = len(arr) printTwoParts(arr, n) # This code is contributed by Manish Shaw # (manishshaw1)
C# // C# program to split an array // into Two equal sum subarrays using System; class GFG { // Returns split point. If not possible, then // return -1. static int findSplitPoint(int []arr, int n) { // traverse array element and compute sum // of whole array int leftSum = 0; for (int i = 0 ; i < n ; i++) leftSum += arr[i]; // again traverse array and compute right // sum and also check left_sum equal to // right sum or not int rightSum = 0; for (int i = n-1; i >= 0; i--) { // add current element to right_sum rightSum += arr[i]; // exclude current element to the left_sum leftSum -= arr[i] ; if (rightSum == leftSum) return i ; } // if it is not possible to split array // into two parts. return -1; } // Prints two parts after finding split // point using findSplitPoint() static void printTwoParts(int []arr, int n) { int splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { Console.Write("Not Possible" ); return; } for (int i = 0; i < n; i++) { if(splitPoint == i) Console.WriteLine(); Console.Write(arr[i] + " "); } } // Driver program public static void Main (String[] args) { int []arr = {1 , 2 , 3 , 4 , 5 , 5 }; int n = arr.Length; printTwoParts(arr, n); } } // This code is contributed by parashar
PHP <?php // PHP program to split // an array into Two // equal sum subarrays // Returns split point. // If not possible, // then return -1. function findSplitPoint($arr, $n) { // traverse array element and // compute sum of whole array $leftSum = 0; for ( $i = 0 ; $i < $n ; $i++) $leftSum += $arr[$i]; // again traverse array and // compute right sum and also // check left_sum equal to // right sum or not $rightSum = 0; for ($i = $n - 1; $i >= 0; $i--) { // add current element // to right_sum $rightSum += $arr[$i]; // exclude current element // to the left_sum $leftSum -= $arr[$i] ; if ($rightSum == $leftSum) return $i ; } // if it is not possible // to split array into // two parts. return -1; } // Prints two parts after // finding split point // using findSplitPoint() function printTwoParts( $arr, $n) { $splitPoint = findSplitPoint($arr, $n); if ($splitPoint == -1 or $splitPoint == $n ) { echo "Not Possible" ; return; } for ( $i = 0; $i < $n; $i++) { if($splitPoint == $i) echo "\n"; echo $arr[$i] , " " ; } } // Driver Code $arr = array(1, 2, 3, 4, 5, 5); $n = count($arr); printTwoParts($arr, $n); // This code is contributed by anuj_67. ?>
JavaScript <script> // Javascript program to split an array // into Two equal sum subarrays // Returns split point. If not possible, then // return -1. function findSplitPoint(arr, n) { // traverse array element and compute sum // of whole array let leftSum = 0; for (let i = 0 ; i < n ; i++) leftSum += arr[i]; // again traverse array and compute right // sum and also check left_sum equal to // right sum or not let rightSum = 0; for (let i = n-1; i >= 0; i--) { // add current element to right_sum rightSum += arr[i]; // exclude current element to the left_sum leftSum -= arr[i] ; if (rightSum == leftSum) return i ; } // if it is not possible to split array // into two parts. return -1; } // Prints two parts after finding split // point using findSplitPoint() function printTwoParts(arr, n) { let splitPoint = findSplitPoint(arr, n); if (splitPoint == -1 || splitPoint == n ) { document.write("Not Possible" ); return; } for (let i = 0; i < n; i++) { if(splitPoint == i) document.write("</br>"); document.write(arr[i] + " "); } } let arr = [1 , 2 , 3 , 4 , 5 , 5 ]; let n = arr.length; printTwoParts(arr, n); // This code is contributed by rameshtravel07. </script>
Time Complexity : O(n)
Auxiliary Space : O(1)
Related Topic: Subarrays, Subsequences, and Subsets in Array
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
SQL Commands | DDL, DQL, DML, DCL and TCL Commands SQL commands are crucial for managing databases effectively. These commands are divided into categories such as Data Definition Language (DDL), Data Manipulation Language (DML), Data Control Language (DCL), Data Query Language (DQL), and Transaction Control Language (TCL). In this article, we will e
7 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read