# import pandas library as pd import pandas as pd # from datetime module import # datetime and date method from datetime import datetime, date # Create a Pandas dataframe from some datetime data. # datetime(year,month,date,hour,minute,second) # date(year,month,date) dataframe = pd.DataFrame({ 'Date and time': [ datetime(2018, 1, 11, 11, 30, 55), datetime(2018, 2, 12, 1, 20, 33), datetime(2018, 3, 13, 11, 10 ), datetime(2018, 4, 14, 16, 45, 35), datetime(2018, 5, 15, 12, 10, 15)], 'Dates only': [ date(2018, 6, 21), date(2018, 7, 22), date(2018, 8, 23), date(2018, 9, 24), date(2018, 10, 25) ], }) # Create a Pandas Excel writer # object using XlsxWriter as the engine. # Also set the default datetime and date formats. # mmmm dd yyyy => month date year # month - full name, date - 2 digit, year - 4 digit # mmm d yyyy hh:mm:ss => month date year hour: minute: second # month - first 3 letters , date - 1 or 2 digit , year - 4 digit. writer_object = pd.ExcelWriter("Example_datetime.xlsx", engine ='xlsxwriter', datetime_format ='mmm d yyyy hh:mm:ss', date_format ='mmmm dd yyyy') # Write a dataframe to the worksheet. dataframe.to_excel(writer_object, sheet_name ='Sheet1') # Create xlsxwriter worksheet object worksheet_object = writer_object.sheets['Sheet1'] # set width of the B and C column worksheet_object.set_column('B:C', 20) # Close the Pandas Excel writer # object and output the Excel file. writer_object.save()