Open In App

numpy.exp2() in Python

Last Updated : 29 Nov, 2018
Suggest changes
Share
Like Article
Like
Report
numpy.exp2(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate 2**x for all x being the array elements. Parameters :
array : [array_like]Input array or object whose elements, we need to test. out : [ndarray, optional]Output array with same dimensions as Input array, placed with result. **kwargs : Allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.
Return :
 An array with 2**x(power of 2) for all x i.e. array elements 
  Code 1 : Working Python
# Python program explaining # exp2() function import numpy as np in_array = [1, 3, 5, 4] print ("Input array : \n", in_array) exp2_values = np.exp2(in_array) print ("\n2**x values : \n", exp2_values) 
Output :
 Input array : [1, 3, 5, 4] 2**x values : [ 2. 8. 32. 16.] 
  Code 2 : Graphical representation Python
# Python program showing # Graphical representation of  # exp2() function import numpy as np import matplotlib.pyplot as plt in_array = [1, 2, 3, 4, 5 ,6] out_array = np.exp2(in_array) print("out_array : ", out_array) y = [1, 2, 3, 4, 5 ,6] plt.plot(in_array, y, color = 'blue', marker = "*") # red for numpy.exp2() plt.plot(out_array, y, color = 'red', marker = "o") plt.title("numpy.exp2()") plt.xlabel("X") plt.ylabel("Y") plt.show() 
Output : out_array : [ 2. 4. 8. 16. 32. 64.] References : https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.exp2.html .

Explore