Open In App

numpy.argmin() in Python

Last Updated : 08 Mar, 2024
Suggest changes
Share
Like Article
Like
Report

    The numpy.argmin() method returns indices of the min element of the array in a particular axis. 
     

    Syntax : 

    numpy.argmin(array, axis = None, out = None)


    Parameters : 

    array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1 out : [array optional]Provides a feature to insert output to the out array and it should be of appropriate shape and dtype


    Return :  

    Array of indices into the array with same shape as array.shape with the dimension along axis removed.


    Code 1 :  

    Python
    # Python Program illustrating # working of argmin() import numpy as geek # Working on 1D array array = geek.arange(8) print("INPUT ARRAY : \n", array) # returning Indices of the min element # as per the indices print("\nIndices of min element : ", geek.argmin(array, axis=0)) 

    Output :  

    INPUT ARRAY : [0 1 2 3 4 5 6 7] Indices of min element : 0


    Code 2 :  

    Python
    # Python Program illustrating # working of argmin() import numpy as geek # Working on 2D array array = geek.random.randint(16, size=(4, 4)) print("INPUT ARRAY : \n", array) # returning Indices of the min element # as per the indices '''   [[ 8 13 5 0]  [ 0 2 5 3]  [10 7 15 15]  [ 3 11 4 12]]  ^ ^ ^ ^  0 2 4 0 - element  1 1 3 0 - indices ''' print("\nIndices of min element : ", geek.argmin(array, axis = 0)) 

    Output : 

    INPUT ARRAY : [[ 8 13 5 0] [ 0 2 5 3] [10 7 15 15] [ 3 11 4 12]] Indices of min element : [1 1 3 0]


    Code 3 : 

    Python
    # Python Program illustrating # working of argmin() import numpy as geek # Working on 2D array array = geek.arange(10).reshape(2, 5) print("array : \n", array) array[0][0] = 10 array[1][1] = 1 array[0][1] = 1 print("\narray : \n", array) # Returns min element print("\narray : ", geek.argmin(array)) # First occurrence of an min element is given print("\nmin ELEMENT INDICES : ", geek.argmin(array, axis = 0)) 

    Output :

    array : [[0 1 2 3 4] [5 6 7 8 9]] array : [[10 1 2 3 4] [ 5 1 7 8 9]] array : 1 min ELEMENT INDICES : [1 0 0 0 0]

Explore