Open In App

Add a row at top in pandas DataFrame

Last Updated : 29 Jul, 2021
Suggest changes
Share
Like Article
Like
Report

Pandas DataFrame is two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). 
Let's see how can we can add a row at top in pandas DataFrame.
Observe this dataset first.
 

Python3
# importing pandas module  import pandas as pd # making data frame  df = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv") df.head(10) 

Code #1: Adding row at the top of given dataframe by concatenating the old dataframe with new one. 
 

Python3
new_row = pd.DataFrame({'Name':'Geeks', 'Team':'Boston', 'Number':3, 'Position':'PG', 'Age':33, 'Height':'6-2', 'Weight':189, 'College':'MIT', 'Salary':99999}, index =[0]) # simply concatenate both dataframes df = pd.concat([new_row, df]).reset_index(drop = True) df.head(5) 

Output: 
 


  
Code #2: Adding row at the top of given dataframe by concatenating the old dataframe with new one. 
 

Python3
new_row = pd.DataFrame({'Name':'Geeks', 'Team':'Boston', 'Number':3, 'Position':'PG', 'Age':33, 'Height':'6-2', 'Weight':189, 'College':'MIT', 'Salary':99999}, index =[0]) # Concatenate new_row with df  df = pd.concat([new_row, df[:]]).reset_index(drop = True) df.head(5) 

Output: 
 


  
Code #3: Adding row at the top of given dataframe by concatenating the old dataframe with new one using df.ix[] method.
 

Python3
new_row = pd.DataFrame({'Name':'Geeks', 'Team':'Boston', 'Number':3, 'Position':'PG', 'Age':33, 'Height':'6-2', 'Weight':189, 'College':'MIT', 'Salary':99999}, index =[0]) df = pd.concat([new_row, df.ix[:]]).reset_index(drop = True) df.head(5) 

Output: 
 


 


Next Article

Similar Reads