Open In App

Python Bokeh - Plotting Hexagons on a Graph

Last Updated : 10 Jul, 2020
Suggest changes
Share
Like Article
Like
Report
Bokeh is a Python interactive data visualization. It renders its plots using HTML and JavaScript. It targets modern web browsers for presentation providing elegant, concise construction of novel graphics with high-performance interactivity. Bokeh can be used to plot hexagons on a graph. Plotting hexagons on a graph can be done using the hex() method of the plotting module.

plotting.figure.hex()

Syntax : hex(parameters) Parameters :
  • x : x-coordinates of the center of the hexagon markers
  • y : y-coordinates of the center of the hexagon markers
  • size : diameter of the hexagon markers, default is 4
  • angle : angle of rotation of the hexagon markers, default is 0
  • angle_units : unit of the angle, default is rad
  • fill_alpha : fill alpha value of the hexagon markers
  • fill_color : fill color value of the hexagon markers
  • line_alpha : percentage value of line alpha, default is 1
  • line_cap : value of line cap for the line, default is butt
  • line_color : color of the line, default is black
  • line_dash : value of line dash such as : solid, dashed, dotted, dotdash, dashdot [default is solid ]
  • line_dash_offset : value of line dash offset, default is 0
  • line_join : value of line join, default in bevel
  • line_width : value of the width of the line, default is 1
  • name : user-supplied name for the model
  • tags : user-supplied values for the model
Other Parameters :
  • alpha : sets all alpha keyword arguments at once
  • color : sets all color keyword arguments at once
  • legend_field : name of a column in the data source that should be used
  • legend_group : name of a column in the data source that should be used
  • legend_label : labels the legend entry
  • muted : determines whether the glyph should be rendered as muted or not, default is False
  • name : optional user-supplied name to attach to the renderer
  • source : user-supplied data source
  • view : view for filtering the data source
  • visible : determines whether the glyph should be rendered or not, default is True
  • x_range_name : name of an extra range to use for mapping x-coordinates
  • y_range_name : name of an extra range to use for mapping y-coordinates
  • level : specifies the render level order for this glyph
Returns : an object of class GlyphRenderer
Example 1 :In this example we will be using the default values for plotting the graph. Python3
# importing the modules from bokeh.plotting import figure, output_file, show # file to save the model output_file("gfg.html") # instantiating the figure object graph = figure(title = "Bokeh Hexagon Graph") # the points to be plotted x = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] y = [i ** 2 for i in x] # plotting the graph graph.hex(x, y) # displaying the model show(graph) 
Output : Example 2 :In this example we will be plotting the hexagons with dotted lines alongside other parameters and the size of the hexagons are in proportion to their values. Python3
# importing the modules from bokeh.plotting import figure, output_file, show # file to save the model output_file("gfg.html") # instantiating the figure object graph = figure(title = "Bokeh Hexagon Graph") # name of the x-axis graph.xaxis.axis_label = "x-axis" # name of the y-axis graph.yaxis.axis_label = "y-axis" # the points to be plotted x = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] y = [i ** 2 for i in x] # size of the hexagons size = [i * 2 for i in y] # angle of the hexagons angle = 10 # fill color value fill_color = None # color of the line line_color = "red" # type of line line_dash = "dotted" # offset of line dash line_dash_offset = 1 # width of the dashes line_width = 10 # name of the legend legend_label = "Sample Hexagons" # plotting the graph graph.hex(x, y, size = size, angle = angle, fill_color = fill_color, line_color = line_color, line_dash = line_dash, line_dash_offset = line_dash_offset, line_width = line_width, legend_label = legend_label) # displaying the model show(graph) 
Output :

Similar Reads