Open In App

Python Bokeh - Plotting Diamond Dots on a Graph

Last Updated : 03 Jul, 2020
Suggest changes
Share
Like Article
Like
Report
Bokeh is a Python interactive data visualization. It renders its plots using HTML and JavaScript. It targets modern web browsers for presentation providing elegant, concise construction of novel graphics with high-performance interactivity. Bokeh can be used to plot diamond with dots on a graph. Plotting diamond with dots on a graph can be done using the diamond_dot() method of the plotting module.

plotting.figure.diamond_dot()

Syntax : diamond_dot(parameters) Parameters :
  • x : x-coordinates of the center of the diamond dot markers
  • y : y-coordinates of the center of the diamond dot markers
  • size : diameter of the diamond dot markers, default is 4
  • angle : angle of rotation of the diamond dot markers, default is 0
  • angle_units : unit of the angle, default is rad
  • fill_alpha : fill alpha value of the diamond dot markers
  • fill_color : fill color value of the diamond dot markers
  • line_alpha : percentage value of line alpha, default is 1
  • line_cap : value of line cap for the line, default is butt
  • line_color : color of the line, default is black
  • line_dash : value of line dash such as :
    • solid
    • dashed
    • dotted
    • dotdash
    • dashdot
    default is solid
  • line_dash_offset : value of line dash offset, default is 0
  • line_join : value of line join, default in bevel
  • line_width : value of the width of the line, default is 1
  • name : user-supplied name for the model
  • tags : user-supplied values for the model
Other Parameters :
  • alpha : sets all alpha keyword arguments at once
  • color : sets all color keyword arguments at once
  • legend_field : name of a column in the data source that should be used
  • legend_group : name of a column in the data source that should be used
  • legend_label : labels the legend entry
  • muted : determines whether the glyph should be rendered as muted or not, default is False
  • name : optional user-supplied name to attach to the renderer
  • source : user-supplied data source
  • view : view for filtering the data source
  • visible : determines whether the glyph should be rendered or not, default is True
  • x_range_name : name of an extra range to use for mapping x-coordinates
  • y_range_name : name of an extra range to use for mapping y-coordinates
  • level : specifies the render level order for this glyph
Returns : an object of class GlyphRenderer
Example 1 :In this example we will be using the default values for plotting the graph. We have provided the size and fill_color attributes to make the glyph visible. Python3
# importing the modules from bokeh.plotting import figure, output_file, show # file to save the model output_file("gfg.html") # instantiating the figure object graph = figure(title = "Bokeh Diamond Dot Graph") # the points to be plotted x = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] y = [i ** 2 for i in x] # plotting the graph graph.diamond_dot(x, y, size = 25, fill_color = None) # displaying the model show(graph) 
Output : Example 2 :In this example we will be plotting the diamond dots where the sizes are in proportion to their values and various other parameters. Python3
# importing the modules from bokeh.plotting import figure, output_file, show # file to save the model output_file("gfg.html") # instantiating the figure object graph = figure(title = "Bokeh Diamond Dot Graph") # name of the x-axis graph.xaxis.axis_label = "x-axis" # name of the y-axis graph.yaxis.axis_label = "y-axis" # the points to be plotted x = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] y = [i ** 2 for i in x] # size of the diamonds size = [i * 2 for i in y] # angle of the diamonds angle = 10 # fill color value fill_color = "yellow" # color of the line line_color = "red" # name of the legend legend_label = "Sample Dashes" # plotting the graph graph.diamond_dot(x, y, size = size, angle = angle, fill_color = fill_color, line_color = line_color, legend_label = legend_label) # displaying the model show(graph) 
Output :

Similar Reads