The numpy.any() function tests whether any array elements along the mentioned axis evaluate to True. Syntax :
numpy.any(a, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c)
Parameters :
array :[array_like]Input array or object whose elements, we need to test. axis : [int or tuple of ints, optional]Axis along which array elements are evaluated. The default (axis = None) is to perform a logical OR over all the dimensions of the input array. Axis may be negative, in which case it counts from the last to the first axis. out : [ndarray, optional]Output array with same dimensions as Input array, placed with result keepdims : [boolean, optional]If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then keepdims will not be passed through to the all method of sub-classes of ndarray, however any non-default value will be. If the sub-classes sum method does not implement keepdims any exceptions will be raised.
Return :
A new Boolean array as per 'out' parameter
Code 1 :
Python # Python Program illustrating # numpy.any() method import numpy as geek # Axis = NULL # True False # True True # True : False = True (OR) print("Bool Value with axis = NONE : ", geek.any([[True,False],[True,True]])) # Axis = 0 # True False # True True # True : False print("\nBool Value with axis = 0 : ", geek.any([[True,False],[True,True]], axis = 0)) print("\nBool : ", geek.any([-1, 4, 5])) # Not a Number (NaN), positive infinity and negative infinity # evaluate to True because these are not equal to zero. print("\nBool : ", geek.any([1.0, geek.nan])) print("\nBool Value : ", geek.any([[0, 0],[0, 0]]))
Output :
Bool Value with axis = NONE : True Bool Value with axis = 0 : [ True True] Bool : True Bool : True Bool Value : False
Code 2 :
Python # Python Program illustrating # numpy.any() method # Parameter : keepdmis import numpy as geek # setting keepdmis = True print("\nBool Value : ", geek.any([[1, 0],[0, 4]], True)) # setting keepdmis = True print("\nBool Value : ", geek.any([[0, 0],[0, 0]], False))
Output :
Bool Value : [ True True] Bool Value : [False False] VisibleDeprecationWarning: using a boolean instead of an integer will result in an error in the future return umr_any(a, axis, dtype, out, keepdims)
Note : These codes won't run on online IDE's. So please, run them on your systems to explore the working.
Similar Reads
numpy.all() in Python The numpy.all() function tests whether all array elements along the mentioned axis evaluate to True. Syntax: numpy.all(array, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters :Â array :[array_like]Input array or object whose elements, we need to test. axis
3 min read
numpy.isnan() in Python The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax :Â numpy.isnan(array [, out]) Parameters :Â array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed wit
2 min read
Python | Numpy numpy.matrix.any() With the help of Numpy numpy.matrix.any() method, we are able to compare each and every element of one matrix with another or we can provide the axis on the we want to apply comparison if any of the element matches it return true. Syntax : numpy.matrix.any() Return : Return true if any match found e
1 min read
numpy.isfinite() in Python The numpy.isfinite() function tests element-wise whether it is finite or not(not infinity or not Not a Number) and return the result as a boolean array. Syntax :Â numpy.isfinite(array [, out]) Parameters :Â array : [array_like]Input array or object whose elements, we need to test for infinity out :
2 min read
numpy.nonzero() in Python numpy.nonzero() function returns the indices of the elements in an array that are non-zero. It is commonly used to find the positions of non-zero (or True) elements in arrays.Example:Pythonimport numpy as np a = np.array([0, 2, 0, 3, 0, 4]) res = np.nonzero(a) print(res)Output(array([1, 3, 5]),) Exp
2 min read
Boolean Array in NumPy - Python The goal here is to work with Boolean arrays in NumPy, which contain only True or False values. Boolean arrays are commonly used for conditional operations, masking and filtering elements based on specific criteria. For example, given a NumPy array [1, 0, 1, 0, 1], we can create a Boolean array wher
3 min read