Open In App

Maximize sum of subsets from two arrays having no consecutive values

Last Updated : 16 Oct, 2023
Suggest changes
Share
Like Article
Like
Report

Given two arrays arr1[] and arr2[] of equal length, the task is to find the maximum sum of any subset possible by selecting elements from both the arrays such that no two elements in the subset should be consecutive.

Examples:

Input: arr1[] = {-1, -2, 4, -4, 5}, arr2[] = {-1, -2, -3, 4, 10}
Output: 14
Explanation:
Required subset {4, 10}. Therefore, sum = 4 + 10 = 14.

Input: arr1[] = {2, 5, 4, 2000}, arr2[] = {-2000, 100, 23, 40}
Output: 2100

Naive Approach: The simplest approach is to generate all possible subsets from both the given arrays such that no two adjacent elements are consecutive and calculate the sum of each subset. Finally, print the maximum sum possible. 
Time Complexity: O(N*2N)
Auxiliary Space: O(2N)

Efficient Approach: The above approach can be optimized using Dynamic Programming. Follow the steps below to solve the problem:

  • Initialize an auxiliary array dp[] of size N.
  • Here, dp[i] stores the maximum possible sum of a subset from both the arrays such that no two elements are consecutive.
  • Declare a function maximumSubsetSum():
    • Base Cases:
      • dp[1] = max(arr1[1], arr2[1]).
      • dp[2] = max(max(arr1[1], arr2[1]), max(arr1[2], arr2[2])).
    • For all other cases, following three conditions arise:
      • dp[i] = max(arr1[i], arr2[i], arr1[i] + dp[i - 2], arr2[i] + dp[i - 2], dp[i - 1]).
  • Finally, print dp[N] as the required answer.

Below is the implementation of the above approach:

C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate maximum subset sum void maximumSubsetSum(int arr1[],int arr2[], int length) {  // Initialize array to store dp states  int dp[length+1];  // Base Cases  if (length == 1)  {  cout << (max(arr1[0], arr2[0]));  return;  }  if (length == 2)  {  cout << (max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0])));  return;  }  else   {  // Pre initializing for dp[0] & dp[1]  dp[0] = max(arr1[0], arr2[0]);  dp[1] = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0]));  int index = 2;  while (index < length)   {  // Calculating dp[index] based on  // above formula  dp[index] = max(max(arr1[index], arr2[index]),  max(max(arr1[index] + dp[index - 2],  arr2[index] + dp[index - 2]),  dp[index - 1]));  ++index;  }  // Print maximum subset sum  cout<<(dp[length - 1]);  } } // Driver Code int main() {    // Given arrays  int arr1[] = { -1, -2, 4, -4, 5 };  int arr2[] = { -1, -2, -3, 4, 10 };  // Length of the array  int length = 5;  maximumSubsetSum(arr1, arr2, length);  return 0; } // This code is contributed by mohit kumar 29 
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG {  // Function to calculate maximum subset sum  static void maximumSubsetSum(int arr1[],  int arr2[],  int length)  {  // Initialize array to store dp states  int dp[] = new int[length + 1];  // Base Cases  if (length == 1) {  System.out.print(  Math.max(arr1[0], arr2[0]));  return;  }  if (length == 2) {  System.out.print(  Math.max(  Math.max(arr1[1], arr2[1]),  Math.max(arr1[0], arr2[0])));  return;  }  else {  // Pre initializing for dp[0] & dp[1]  dp[0] = Math.max(arr1[0], arr2[0]);  dp[1] = Math.max(  Math.max(arr1[1], arr2[1]),  Math.max(arr1[0], arr2[0]));  int index = 2;  while (index < length) {  // Calculating dp[index] based on  // above formula  dp[index] = Math.max(  Math.max(arr1[index], arr2[index]),  Math.max(  Math.max(  arr1[index] + dp[index - 2],  arr2[index] + dp[index - 2]),  dp[index - 1]));  ++index;  }  // Print maximum subset sum  System.out.print(dp[length - 1]);  }  }  // Driver Code  public static void main(String[] args)  {  // Given arrays  int arr1[] = { -1, -2, 4, -4, 5 };  int arr2[] = { -1, -2, -3, 4, 10 };  // Length of the array  int length = arr1.length;  maximumSubsetSum(arr1, arr2, length);  } } 
Python3
# Python program of the above approach # Function to calculate maximum subset sum def maximumSubsetSum(arr1, arr2, length) : # Initialize array to store dp states dp = [0] * (length+1) # Base Cases if (length == 1) : print(max(arr1[0], arr2[0])) return if (length == 2) : print(max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0]))) return else : # Pre initializing for dp[0] & dp[1] dp[0] = max(arr1[0], arr2[0]) dp[1] = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0])) index = 2 while (index < length) : # Calculating dp[index] based on # above formula dp[index] = max(max(arr1[index], arr2[index]), max(max(arr1[index] + dp[index - 2], arr2[index] + dp[index - 2]), dp[index - 1])) index += 1 # Print maximum subset sum print(dp[length - 1]) # Driver Code # Given arrays arr1 = [ -1, -2, 4, -4, 5 ] arr2 = [ -1, -2, -3, 4, 10 ] # Length of the array length = 5 maximumSubsetSum(arr1, arr2, length) # This code is contributed by susmitakundugoaldanga. 
C#
// C# program for the above approach using System; class GFG {  // Function to calculate maximum subset sum  static void maximumSubsetSum(int[] arr1,  int[] arr2,  int length)  {  // Initialize array to store dp states  int[] dp = new int[length + 1];  // Base Cases  if (length == 1) {  Console.WriteLine(Math.Max(arr1[0], arr2[0]));  return;  }  if (length == 2)   {  Console.WriteLine(Math.Max(  Math.Max(arr1[1], arr2[1]),  Math.Max(arr1[0], arr2[0])));  return;  }  else   {  // Pre initializing for dp[0] & dp[1]  dp[0] = Math.Max(arr1[0], arr2[0]);  dp[1] = Math.Max(Math.Max(arr1[1], arr2[1]),  Math.Max(arr1[0], arr2[0]));  int index = 2;  while (index < length) {  // Calculating dp[index] based on  // above formula  dp[index] = Math.Max(Math.Max(arr1[index], arr2[index]),  Math.Max(Math.Max(arr1[index] +   dp[index - 2],  arr2[index] +   dp[index - 2]),  dp[index - 1]));  ++index;  }  // Print maximum subset sum  Console.WriteLine(dp[length - 1]);  }  }  // Driver Code  static public void Main()  {  // Given arrays  int[] arr1 = { -1, -2, 4, -4, 5 };  int[] arr2 = { -1, -2, -3, 4, 10 };  // Length of the array  int length = arr1.Length;  maximumSubsetSum(arr1, arr2, length);  } } // This code is contributed by code_hunt. 
JavaScript
<script> // javascript program of the above approach  // Function to calculate maximum subset sum  function maximumSubsetSum(arr1, arr2,length)  {    // Initialize array to store dp states  let dp = new Array(length).fill(0);;    // Base Cases  if (length == 1) {  document.write(  Math.max(arr1[0], arr2[0]));  return;  }    if (length == 2) {  document.write(  Math.max(  Math.max(arr1[1], arr2[1]),  Math.max(arr1[0], arr2[0])));  return;  }  else {    // Pre initializing for dp[0] & dp[1]  dp[0] = Math.max(arr1[0], arr2[0]);  dp[1] = Math.max(  Math.max(arr1[1], arr2[1]),  Math.max(arr1[0], arr2[0]));    let index = 2;  while (index < length) {    // Calculating dp[index] based on  // above formula  dp[index] = Math.max(  Math.max(arr1[index], arr2[index]),  Math.max(  Math.max(  arr1[index] + dp[index - 2],  arr2[index] + dp[index - 2]),  dp[index - 1]));  ++index;  }    // Print maximum subset sum  document.write(dp[length - 1]);  }  }  // Driver Code    // Given arrays  let arr1 = [ -1, -2, 4, -4, 5 ];  let arr2 = [ -1, -2, -3, 4, 10 ];    // Length of the array  let length = arr1.length;    maximumSubsetSum(arr1, arr2, length); </script> 

Output
14

Time Complexity: O(N)
Auxiliary Space: O(N)

Efficient approach : Space optimization O(1)

In previous approach we the current value dp[i] is only depend upon the previous 2 values i.e. dp[i-1] and dp[i-2]. So to optimize the space we can keep track of previous and current values by the help of three variables prev1, prev2 and curr which will reduce the space complexity from O(x) to O(1).  

Implementation:

C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate maximum subset sum void maximumSubsetSum(int arr1[],int arr2[], int length) {  // Initialize variables to store dp states  int dp0 = max(arr1[0], arr2[0]);  int dp1 = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0]));  int dpi = dp1, dpim2 = dp0;  // Base Cases  if (length == 1)  {  cout << dp0;  return;  }  if (length == 2)  {  cout << dp1;  return;  }  else  {  int index = 2;  while (index < length)  {  // Calculating dp[index] based on above formula  dpi = max(max(arr1[index], arr2[index]),  max(max(arr1[index] + dpim2,  arr2[index] + dpim2),  dp1));  dpim2 = dp1;  dp1 = dpi;  ++index;  }  // Print maximum subset sum  cout<<(dpi);  } } // Driver Code int main() {  // Given arrays  int arr1[] = { -1, -2, 4, -4, 5 };  int arr2[] = { -1, -2, -3, 4, 10 };  // Length of the array  int length = 5;  maximumSubsetSum(arr1, arr2, length);  return 0; } 
Java
public class GFG {  // Function to calculate maximum subset sum  static void maximumSubsetSum(int[] arr1, int[] arr2, int length) {  // Initialize variables to store dp states  int dp0 = Math.max(arr1[0], arr2[0]);  int dp1 = Math.max(Math.max(arr1[1], arr2[1]), Math.max(arr1[0], arr2[0]));  int dpi = dp1, dpim2 = dp0;  // Base Cases  if (length == 1) {  System.out.println(dp0);  return;  }  if (length == 2) {  System.out.println(dp1);  return;  } else {  int index = 2;  while (index < length) {  // Calculating dp[index] based on the formula  dpi = Math.max(Math.max(arr1[index], arr2[index]),  Math.max(Math.max(arr1[index] + dpim2,  arr2[index] + dpim2),  dp1));  dpim2 = dp1;  dp1 = dpi;  ++index;  }  // Print maximum subset sum  System.out.println(dpi);  }  }  // Driver Code  public static void main(String[] args) {  // Given arrays  int[] arr1 = { -1, -2, 4, -4, 5 };  int[] arr2 = { -1, -2, -3, 4, 10 };  // Length of the array  int length = 5;  maximumSubsetSum(arr1, arr2, length);  } } 
Python3
def maximumSubsetSum(arr1, arr2, length): # Initialize variables to store dp states dp0 = max(arr1[0], arr2[0]) dp1 = max(max(arr1[1], arr2[1]), max(arr1[0], arr2[0])) dpi, dpim2 = dp1, dp0 # Base Cases if length == 1: print(dp0) return if length == 2: print(dp1) return else: index = 2 while index < length: # Calculating dpi based on the given formula dpi = max( max(arr1[index], arr2[index]), max( max(arr1[index] + dpim2, arr2[index] + dpim2), dp1 ) ) dpim2 = dp1 dp1 = dpi index += 1 # Print maximum subset sum print(dpi) # Driver Code if __name__ == "__main__": # Given arrays arr1 = [-1, -2, 4, -4, 5] arr2 = [-1, -2, -3, 4, 10] # Length of the array length = 5 maximumSubsetSum(arr1, arr2, length) 
C#
using System; class Program {  static void MaximumSubsetSum(int[] arr1, int[] arr2, int length)  {   // Initialize variables to store dp states  int dp0 = Math.Max(arr1[0], arr2[0]);  int dp1 = Math.Max(Math.Max(arr1[1], arr2[1]), Math.Max(arr1[0], arr2[0]));  int dpi = dp1, dpim2 = dp0;    // Base Cases  if (length == 1)  {  Console.Write(dp0);  return;  }  if (length == 2)  {  Console.Write(dp1);  return;  }  else  {  int index = 2;  while (index < length)  {   // Calculating dp[index] based on above formula  dpi = Math.Max(Math.Max(arr1[index], arr2[index]),  Math.Max(Math.Max(arr1[index] + dpim2,  arr2[index] + dpim2),  dp1));  dpim2 = dp1;  dp1 = dpi;  ++index;  }  Console.Write(dpi);  }  }  static void Main(string[] args)  {  int[] arr1 = { -1, -2, 4, -4, 5 };  int[] arr2 = { -1, -2, -3, 4, 10 };  int length = 5;  MaximumSubsetSum(arr1, arr2, length);  } } 
JavaScript
function maximumSubsetSum(arr1, arr2, length) {  // Initialize variables to store dp states  let dp0 = Math.max(arr1[0], arr2[0]);  let dp1 = Math.max(Math.max(arr1[1], arr2[1]), Math.max(arr1[0], arr2[0]));  let dpi = dp1;  let dpim2 = dp0;  // Base Cases  if (length === 1) {  console.log(dp0); // Print the maximum subset sum  return;  }  if (length === 2) {  console.log(dp1); // Print the maximum subset sum  return;  } else {  let index = 2;  while (index < length) {  // Calculate dpi based on the maximum of different cases  dpi = Math.max(  Math.max(arr1[index], arr2[index]),  Math.max(  Math.max(arr1[index] + dpim2, arr2[index] + dpim2),  dp1  )  );  dpim2 = dp1;  dp1 = dpi;  index++;  }  console.log(dpi); // Print the maximum subset sum  } } const arr1 = [-1, -2, 4, -4, 5]; const arr2 = [-1, -2, -3, 4, 10]; const length = 5; maximumSubsetSum(arr1, arr2, length); 

Output
14

Time Complexity: O(N)
Auxiliary Space: O(1)


Similar Reads

Practice Tags :