Open In App

Matplotlib.pyplot.hsv() in Python

Last Updated : 19 Apr, 2020
Suggest changes
Share
Like Article
Like
Report
Matplotlib is a library in Python and it is numerical - mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.

matplotlib.pyplot.hsv() Function

The hsv() function in pyplot module of matplotlib library is used to set the colormap to "hsv". Syntax:
matplotlib.pyplot.hsv() 
Below examples illustrate the matplotlib.pyplot.hsv() function in matplotlib.pyplot: Example #1: Python3 1==
# Implementation of matplotlib function import matplotlib.pyplot as plt import matplotlib.tri as tri import numpy as np    ang = 40 rad = 10 radm = 0.35 radii = np.linspace(radm, 0.95, rad)   angles = np.linspace(0, 4 * np.pi, ang) angles = np.repeat(angles[..., np.newaxis],  rad, axis = 1) angles[:, 1::2] += np.pi / ang   x = (radii * np.cos(angles)).flatten() y = (radii * np.sin(angles)).flatten() z = (np.sin(4 * radii) * np.cos(4 * angles)).flatten()   triang = tri.Triangulation(x, y) triang.set_mask(np.hypot(x[triang.triangles].mean(axis = 1),  y[triang.triangles].mean(axis = 1))  < radm)   tpc = plt.tripcolor(triang, z, shading ='flat') plt.hsv() plt.title('matplotlib.pyplot.hsv() function Example',  fontweight ="bold") plt.show() 
Output: Example #2: Python3 1==
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import LogNorm dx, dy = 0.015, 0.05 x = np.arange(-3.0, 3.0, dx) y = np.arange(-3.0, 3.0, dy) X, Y = np.meshgrid(x, y)   extent = np.min(x), np.max(x), np.min(y), np.max(y) Z1 = np.add.outer(range(6), range(6)) % 2 plt.imshow(Z1, cmap ="binary_r",  interpolation ='nearest',  extent = extent,  alpha = 1)   def geeks(x, y):    return (1 - x / 2 + x**5 + y**6) * np.exp(-(x**2 + y**2))   Z2 = geeks(X, Y)   plt.imshow(Z2, alpha = 0.7,   interpolation ='bilinear',  extent = extent) plt.hsv() plt.title('matplotlib.pyplot.hsv() function\ Example', fontweight ="bold") plt.show() 
Output:

Next Article

Similar Reads

Article Tags :
Practice Tags :