Open In App

Java Program to Find the Determinant of a Matrix

Last Updated : 01 May, 2025
Suggest changes
Share
Like Article
Like
Report

The determinant of a matrix is a special calculated value that can only be calculated if the matrix has same number of rows and columns (square matrix). It is helpful in determining the system of linear equations, image processing, and determining whether the matrix is singular or non-singular.

In this article, we are going to learn the step-by-step procedure to calculate the determinant of a matrix and Java implementations using both recursive and non-recursive approaches.

Procedure to Calculate

  • First, we need to calculate the cofactor of all the elements of the matrix in the first row or first column.
  • Then, multiply each element of the first row or first column by their respective cofactor.
  • At last, we need to add them up with alternate signs.

Examples:

Determinant of 2*2 matrix:

[4, 3]
[2, 3]

= (4*3)-(3*2)
= 12-6
= 6


Determinant of 3*3 matrix:

[1, 3, -2]
[-1, 2, 1]
[1, 0, -2]

= 1(-4-0)-3(2-1)+(-2)(0-2)
= -4-3+4
= -3

Note:

  • The determinant of 1*1 matrix is the element itself.
  • The Cofactor of any element of the stated matrix can be calculated by eliminating the row and the column of that element from the matrix stated.

Let's see an example to get a clear concept of the above topic.

Determinant of a Matrix in Java

Example 1: Finding the determinant of a matrix using recursion.

Java
// Java program to find // Determinant of a matrix // using recursion class Geeks {  // Dimension of input square matrix  static final int N = 2;  // Function to get cofactor of  // mat[p][q] in temp[][]. n is  // current dimension of mat[][]  static void getCofactor(int mat[][], int temp[][],  int p, int q, int n)  {  int i = 0, j = 0;  // Looping for each element  // of the matrix  for (int row = 0; row < n; row++) {  for (int col = 0; col < n; col++) {    // Copying into temporary matrix  // only those element which are  // not in given row and column  if (row != p && col != q) {  temp[i][j++] = mat[row][col];    // Row is filled, so increase  // row index and reset col index  if (j == n - 1) {  j = 0;  i++;  }  }  }  }  }  /* Recursive function for finding determinant  of matrix. n is current dimension of mat[][]. */  static int determinantOfMatrix(int mat[][], int n)  {  int D = 0; // Initialize result  // Base case : if matrix  // contains single element  if (n == 1)  return mat[0][0];  // To store cofactors  int temp[][] = new int[N][N];  // To store sign multiplier  int sign = 1;  // Iterate for each element of first row  for (int f = 0; f < n; f++) {    // Getting Cofactor of mat[0][f]  getCofactor(mat, temp, 0, f, n);  D += sign * mat[0][f]  * determinantOfMatrix(temp, n - 1);  // terms are to be added  // with alternate sign  sign = -sign;  }  return D;  }  // function for displaying the matrix   static void display(int mat[][], int row, int col)  {  for (int i = 0; i < row; i++) {  for (int j = 0; j < col; j++)  System.out.print(mat[i][j]);  System.out.print("\n");  }  }  // Driver code  public static void main(String[] args)  {  int mat[][] = { { 4, 3 }, { 2, 3 } };  System.out.print("Determinant "  + "of the matrix is: "  + determinantOfMatrix(mat, N));  } } 

Output
Determinant of the matrix is: 6

Time complexity: O(n3


Example 2: Non-recursive Implementation of finding determinant of a matrix.

Java
// Java program to find Determinant of a matrix class Geeks {  // Dimension of input square matrix  static final int N = 4;  // Function to get determinant of matrix  static int determinantOfMatrix(int mat[][], int n)  {  int num1, num2, det = 1, index,  total = 1; // Initialize result  // temporary array for storing row  int[] temp = new int[n + 1];  // loop for traversing the diagonal elements  for (int i = 0; i < n; i++) {  index = i; // initialize the index  // finding the index which has non zero value  while (mat[index][i] == 0 && index < n) {  index++;  }  if (index == n) // if there is non zero element  {  // the determinant of matrix as zero  continue;  }  if (index != i) {    // loop for swapping the diagonal element row  // and index row  for (int j = 0; j < n; j++) {  swap(mat, index, j, i, j);  }  // determinant sign changes when we shift  // rows go through determinant properties  det = (int)(det * Math.pow(-1, index - i));  }  // storing the values of diagonal row elements  for (int j = 0; j < n; j++) {  temp[j] = mat[i][j];  }  // traversing every row below the diagonal  // element  for (int j = i + 1; j < n; j++) {  num1 = temp[i]; // value of diagonal element  num2 = mat[j]  [i]; // value of next row element  // traversing every column of row  // and multiplying to every row  for (int k = 0; k < n; k++) {    // multiplying to make the diagonal  // element and next row element equal  mat[j][k] = (num1 * mat[j][k])  - (num2 * temp[k]);  }  total = total * num1; // Det(kA)=kDet(A);  }  }  // multiplying the diagonal elements to get  // determinant  for (int i = 0; i < n; i++) {  det = det * mat[i][i];  }  return (det / total); // Det(kA)/k=Det(A);  }  static int[][] swap(int[][] arr, int i1, int j1, int i2,  int j2)  {  int temp = arr[i1][j1];  arr[i1][j1] = arr[i2][j2];  arr[i2][j2] = temp;  return arr;  }  // Driver code  public static void main(String[] args)  {  int mat[][] = { { 1, 0, 2, -1 },  { 3, 0, 0, 5 },  { 2, 1, 4, -3 },  { 1, 0, 5, 0 } };  // Function call  System.out.printf(  "Determinant of the matrix is: %d",  determinantOfMatrix(mat, N));  } } 

Output
Determinant of the matrix is: 30

Time complexity: O(n3


Next Article

Similar Reads

Article Tags :
Practice Tags :