Queries to find the Lower Bound of K from Prefix Sum Array with updates using Fenwick Tree
Last Updated : 27 Sep, 2021
Given an array A[ ] consisting of non-negative integers and a matrix Q[ ][ ] consisting of queries of the following two types:
- (1, l, val): Update A[l] to A[l] + val.
- (2, K): Find the lower_bound of K in the prefix sum array of A[ ]. If the lower_bound does not exist, print -1.
The task for each query of the second type is to print the index of the lower_bound of value K.
Examples:
Input: A[ ] = {1, 2, 3, 5, 8}, Q[ ][ ] = {{1, 0, 2}, {2, 5}, {1, 3, 5}}
Output: 1
Explanation:
Query 1: Update A[0] to A[0] + 2. Now A[ ] = {3, 2, 3, 5, 8}
Query 2: lower_bound of K = 5 in the prefix sum array {3, 5, 8, 13, 21} is 5 and index = 1.
Query 3: Update A[3] to A[3] + 5. Now A[ ] = {3, 2, 3, 10, 8}
Input: A[ ] = {4, 1, 12, 8, 20}, Q[ ] = {{2, 50}, {1, 3, 12}, {2, 50}}
Output: -1
Naive approach:
The simplest approach is to first build a prefix sum array of a given array A[ ], and for queries of Type 1, update values and recalculate the prefix sum. For query of Type 2, perform a Binary Search on the prefix sum array to find the lower bound.
Time Complexity: O(Q*(N*logn))
Auxiliary Space: O(N)
Efficient Approach:
The above approach can be optimized Fenwick Tree. Using this Data Structure, the update queries in the prefix sum array can be performed in logarithmic time.
Follow the steps below to solve the problem:
- Construct the Prefix Sum Array using Fenwick Tree.
- For queries of Type 1, while l > 0, add val to A[l] traverse to the parent node by adding the least significant bit in l.
- For queries of Type 2, perform the Binary Search on the Fenwick Tree to obtain the lower bound.
- Whenever a prefix sum greater than K appears, store that index and traverse the left part of the Fenwick Tree. Otherwise, traverse the right part of the Fenwick Tree now, perform Binary Search.
- Finally, print the required index.
Below is the implementation of the above approach:
C++ // C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate and return // the sum of arr[0..index] int getSum(int BITree[], int index) { int ans = 0; index += 1; // Traverse ancestors // of BITree[index] while (index > 0) { // Update the sum of current // element of BIT to ans ans += BITree[index]; // Update index to that // of the parent node in // getSum() view by // subtracting LSB(Least // Significant Bit) index -= index & (-index); } return ans; } // Function to update the Binary Index // Tree by replacing all ancestors of // index by their respective sum with val static void updateBIT(int BITree[], int n, int index, int val) { index = index + 1; // Traverse all ancestors // and sum with 'val'. while (index <= n) { // Add 'val' to current // node of BIT BITree[index] += val; // Update index to that // of the parent node in // updateBit() view by // adding LSB(Least // Significant Bit) index += index & (-index); } } // Function to construct the Binary // Indexed Tree for the given array int* constructBITree(int arr[], int n) { // Initialize the // Binary Indexed Tree int* BITree = new int[n + 1]; for(int i = 0; i <= n; i++) BITree[i] = 0; // Store the actual values in // BITree[] using update() for(int i = 0; i < n; i++) updateBIT(BITree, n, i, arr[i]); return BITree; } // Function to obtain and return // the index of lower_bound of k int getLowerBound(int BITree[], int arr[], int n, int k) { int lb = -1; int l = 0, r = n - 1; while (l <= r) { int mid = l + (r - l) / 2; if (getSum(BITree, mid) >= k) { r = mid - 1; lb = mid; } else l = mid + 1; } return lb; } void performQueries(int A[], int n, int q[][3]) { // Store the Binary Indexed Tree int* BITree = constructBITree(A, n); // Solve each query in Q for(int i = 0; i < sizeof(q[0]) / sizeof(int); i++) { int id = q[i][0]; if (id == 1) { int idx = q[i][1]; int val = q[i][2]; A[idx] += val; // Update the values of all // ancestors of idx updateBIT(BITree, n, idx, val); } else { int k = q[i][1]; int lb = getLowerBound(BITree, A, n, k); cout << lb << endl; } } } // Driver Code int main() { int A[] = { 1, 2, 3, 5, 8 }; int n = sizeof(A) / sizeof(int); int q[][3] = { { 1, 0, 2 }, { 2, 5, 0 }, { 1, 3, 5 } }; performQueries(A, n, q); } // This code is contributed by jrishabh99
Java // Java program to implement // the above approach import java.util.*; import java.io.*; class GFG { // Function to calculate and return // the sum of arr[0..index] static int getSum(int BITree[], int index) { int ans = 0; index += 1; // Traverse ancestors // of BITree[index] while (index > 0) { // Update the sum of current // element of BIT to ans ans += BITree[index]; // Update index to that // of the parent node in // getSum() view by // subtracting LSB(Least // Significant Bit) index -= index & (-index); } return ans; } // Function to update the Binary Index // Tree by replacing all ancestors of // index by their respective sum with val static void updateBIT(int BITree[], int n, int index, int val) { index = index + 1; // Traverse all ancestors // and sum with 'val'. while (index <= n) { // Add 'val' to current // node of BIT BITree[index] += val; // Update index to that // of the parent node in // updateBit() view by // adding LSB(Least // Significant Bit) index += index & (-index); } } // Function to construct the Binary // Indexed Tree for the given array static int[] constructBITree( int arr[], int n) { // Initialize the // Binary Indexed Tree int[] BITree = new int[n + 1]; for (int i = 0; i <= n; i++) BITree[i] = 0; // Store the actual values in // BITree[] using update() for (int i = 0; i < n; i++) updateBIT(BITree, n, i, arr[i]); return BITree; } // Function to obtain and return // the index of lower_bound of k static int getLowerBound(int BITree[], int[] arr, int n, int k) { int lb = -1; int l = 0, r = n - 1; while (l <= r) { int mid = l + (r - l) / 2; if (getSum(BITree, mid) >= k) { r = mid - 1; lb = mid; } else l = mid + 1; } return lb; } static void performQueries(int A[], int n, int q[][]) { // Store the Binary Indexed Tree int[] BITree = constructBITree(A, n); // Solve each query in Q for (int i = 0; i < q.length; i++) { int id = q[i][0]; if (id == 1) { int idx = q[i][1]; int val = q[i][2]; A[idx] += val; // Update the values of all // ancestors of idx updateBIT(BITree, n, idx, val); } else { int k = q[i][1]; int lb = getLowerBound( BITree, A, n, k); System.out.println(lb); } } } // Driver Code public static void main(String[] args) { int A[] = { 1, 2, 3, 5, 8 }; int n = A.length; int[][] q = { { 1, 0, 2 }, { 2, 5 }, { 1, 3, 5 } }; performQueries(A, n, q); } }
Python3 # Python3 program to implement # the above approach # Function to calculate and return # the sum of arr[0..index] def getSum(BITree, index): ans = 0 index += 1 # Traverse ancestors # of BITree[index] while (index > 0): # Update the sum of current # element of BIT to ans ans += BITree[index] # Update index to that # of the parent node in # getSum() view by # subtracting LSB(Least # Significant Bit) index -= index & (-index) return ans # Function to update the # Binary Index Tree by # replacing all ancestors # of index by their respective # sum with val def updateBIT(BITree, n, index, val): index = index + 1 # Traverse all ancestors # and sum with 'val'. while (index <= n): # Add 'val' to current # node of BIT BITree[index] += val # Update index to that # of the parent node in # updateBit() view by # adding LSB(Least # Significant Bit) index += index & (-index) # Function to construct the Binary # Indexed Tree for the given array def constructBITree(arr, n): # Initialize the # Binary Indexed Tree BITree = [0] * (n + 1) for i in range(n + 1): BITree[i] = 0 # Store the actual values in # BITree[] using update() for i in range(n): updateBIT(BITree, n, i, arr[i]) return BITree # Function to obtain and return # the index of lower_bound of k def getLowerBound(BITree, arr, n, k): lb = -1 l = 0 r = n - 1 while (l <= r): mid = l + (r - l) // 2 if (getSum(BITree, mid) >= k): r = mid - 1 lb = mid else: l = mid + 1 return lb def performQueries(A, n, q): # Store the Binary Indexed Tree BITree = constructBITree(A, n) # Solve each query in Q for i in range(len(q)): id = q[i][0] if (id == 1): idx = q[i][1] val = q[i][2] A[idx] += val # Update the values of all # ancestors of idx updateBIT(BITree, n, idx, val) else: k = q[i][1] lb = getLowerBound(BITree, A, n, k) print(lb) # Driver Code if __name__ == "__main__": A = [1, 2, 3, 5, 8] n = len(A) q = [[1, 0, 2], [2, 5, 0], [1, 3, 5]] performQueries(A, n, q) # This code is contributed by Chitranayal
C# // C# program to implement // the above approach using System; class GFG{ // Function to calculate and return // the sum of arr[0..index] static int getSum(int []BITree, int index) { int ans = 0; index += 1; // Traverse ancestors // of BITree[index] while (index > 0) { // Update the sum of current // element of BIT to ans ans += BITree[index]; // Update index to that // of the parent node in // getSum() view by // subtracting LSB(Least // Significant Bit) index -= index & (-index); } return ans; } // Function to update the Binary Index // Tree by replacing all ancestors of // index by their respective sum with val static void updateBIT(int []BITree, int n, int index, int val) { index = index + 1; // Traverse all ancestors // and sum with 'val'. while (index <= n) { // Add 'val' to current // node of BIT BITree[index] += val; // Update index to that // of the parent node in // updateBit() view by // adding LSB(Least // Significant Bit) index += index & (-index); } } // Function to construct the Binary // Indexed Tree for the given array static int[] constructBITree(int []arr, int n) { // Initialize the // Binary Indexed Tree int[] BITree = new int[n + 1]; for(int i = 0; i <= n; i++) BITree[i] = 0; // Store the actual values in // BITree[] using update() for(int i = 0; i < n; i++) updateBIT(BITree, n, i, arr[i]); return BITree; } // Function to obtain and return // the index of lower_bound of k static int getLowerBound(int []BITree, int[] arr, int n, int k) { int lb = -1; int l = 0, r = n - 1; while (l <= r) { int mid = l + (r - l) / 2; if (getSum(BITree, mid) >= k) { r = mid - 1; lb = mid; } else l = mid + 1; } return lb; } static void performQueries(int []A, int n, int [,]q) { // Store the Binary Indexed Tree int[] BITree = constructBITree(A, n); // Solve each query in Q for(int i = 0; i < q.GetLength(0); i++) { int id = q[i, 0]; if (id == 1) { int idx = q[i, 1]; int val = q[i, 2]; A[idx] += val; // Update the values of all // ancestors of idx updateBIT(BITree, n, idx, val); } else { int k = q[i, 1]; int lb = getLowerBound(BITree, A, n, k); Console.WriteLine(lb); } } } // Driver Code public static void Main(String[] args) { int []A = { 1, 2, 3, 5, 8 }; int n = A.Length; int [,]q = { { 1, 0, 2 }, { 2, 5, 0 }, { 1, 3, 5 } }; performQueries(A, n, q); } } // This code is contributed by 29AjayKumar
JavaScript <script> // Javascript program to implement // the above approach // Function to calculate and return // the sum of arr[0..index] function getSum(BITree, index) { let ans = 0; index += 1; // Traverse ancestors // of BITree[index] while (index > 0) { // Update the sum of current // element of BIT to ans ans += BITree[index]; // Update index to that // of the parent node in // getSum() view by // subtracting LSB(Least // Significant Bit) index -= index & (-index); } return ans; } // Function to update the Binary Index // Tree by replacing all ancestors of // index by their respective sum with val function updateBIT(BITree, n, index, val) { index = index + 1; // Traverse all ancestors // and sum with 'val'. while (index <= n) { // Add 'val' to current // node of BIT BITree[index] += val; // Update index to that // of the parent node in // updateBit() view by // adding LSB(Least // Significant Bit) index += index & (-index); } } // Function to construct the Binary // Indexed Tree for the given array function constructBITree(arr, n) { // Initialize the // Binary Indexed Tree let BITree = new Array(n + 1); for (let i = 0; i <= n; i++) BITree[i] = 0; // Store the actual values in // BITree[] using update() for (let i = 0; i < n; i++) updateBIT(BITree, n, i, arr[i]); return BITree; } // Function to obtain and return // the index of lower_bound of k function getLowerBound(BITree, arr, n, k) { let lb = -1; let l = 0, r = n - 1; while (l <= r) { let mid = Math.floor(l + (r - l) / 2); if (getSum(BITree, mid) >= k) { r = mid - 1; lb = mid; } else l = mid + 1; } return lb; } function performQueries(A, n, q) { // Store the Binary Indexed Tree let BITree = constructBITree(A, n); // Solve each query in Q for (let i = 0; i < q.length; i++) { let id = q[i][0]; if (id == 1) { let idx = q[i][1]; let val = q[i][2]; A[idx] += val; // Update the values of all // ancestors of idx updateBIT(BITree, n, idx, val); } else { let k = q[i][1]; let lb = getLowerBound(BITree, A, n, k); document.write(lb + "<br>"); } } } // Driver Code let A = [1, 2, 3, 5, 8]; let n = A.length; let q = [[1, 0, 2], [2, 5, 0], [1, 3, 5]]; performQueries(A, n, q); // This code is contributed by gfgking </script>
Time Complexity: O(Q*(logN)2)
Auxiliary Space: O(N)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read