Program to find transpose of a matrix
Last Updated : 13 Aug, 2025
Given a 2D matrix mat[][], compute its transpose. The transpose of a matrix is formed by converting all rows of mat[][] into columns and all columns into rows.
Example:
Input: mat[][] = [[1, 1, 1, 1],
[2, 2, 2, 2],
[3, 3, 3, 3],
[4, 4, 4, 4]]
Output: [[1, 2, 3 ,4],
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]]
Explanation: The output is the transpose of the input matrix, where each row becomes a column. This rearranges the data so that vertical patterns in the original matrix become horizontal in the result.
Input: mat[][] = [[1, 2],
[9, -2]]
Output: [[1, 9],
[2, -2]]
Explanation: The output is the transpose of the input matrix, where each row becomes a column. This rearranges the data so that vertical patterns in the original matrix become horizontal in the result.
[Approach 1] Brute Force Matrix Transposition O(n*m) Time and O(n*m) Space
The idea is to create a new matrix where rows become columns by swapping indices — element at position [i][j] in the original becomes [j][i] in the transposed matrix.
Step by Step Implementations:
- Initialize a new matrix of size m × n (rows become columns and vice versa).
- Iterate through each element of the original matrix.
- Assign each element from row r and column c in the original matrix to row c and column r in the new matrix.
- Return the new transposed matrix.
C++ #include <iostream> #include <vector> using namespace std; vector<vector<int>> transpose(vector<vector<int>>& mat) { int rows = mat.size(); int cols = mat[0].size(); // Create a result matrix of size // cols x rows for the transpose vector<vector<int>> tMat(cols, vector<int>(rows)); // Fill the transposed matrix // by swapping rows with columns for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { // Assign transposed value tMat[j][i] = mat[i][j]; } } return tMat; } int main() { vector<vector<int>> mat = { {1, 1, 1, 1}, {2, 2, 2, 2}, {3, 3, 3, 3}, {4, 4, 4, 4} }; vector<vector<int>> res = transpose(mat); for (auto& row : res) { for (auto& elem : row) { cout << elem << ' '; } cout << "\n"; } return 0; }
Java import java.util.ArrayList; import java.util.Scanner; public class GfG { public static ArrayList<ArrayList<Integer>> transpose(int[][] mat) { int rows = mat.length; int cols = mat[0].length; // Create a result matrix of size // cols x rows for the transpose ArrayList<ArrayList<Integer>> tMat = new ArrayList<>(); // Fill the transposed matrix by // swapping rows with columns for (int i = 0; i < cols; i++) { ArrayList<Integer> row = new ArrayList<>(); for (int j = 0; j < rows; j++) { // Assign transposed value row.add(mat[j][i]); } tMat.add(row); } return tMat; } public static void main(String[] args) { int[][] mat = { {1, 1, 1, 1}, {2, 2, 2, 2}, {3, 3, 3, 3}, {4, 4, 4, 4} }; ArrayList<ArrayList<Integer>> res = transpose(mat); for (ArrayList<Integer> row : res) { for (int elem : row) { System.out.print(elem + " "); } System.out.println(); } } }
Python def transpose(mat): rows = len(mat) cols = len(mat[0]) # Create a result matrix of size # cols x rows for the transpose tMat = [[0 for _ in range(rows)] for _ in range(cols)] # Fill the transposed matrix by # swapping rows with columns for i in range(rows): for j in range(cols): # Assign transposed value tMat[j][i] = mat[i][j] return tMat if __name__ == "__main__": mat = [[1, 1, 1, 1],[2, 2, 2, 2],[3, 3, 3, 3], [4, 4, 4, 4]] res = transpose(mat) for row in res: for elem in row: print(elem, end=' ') print()
C# using System; using System.Collections.Generic; public class GfG { public static List<List<int>> transpose(int[,] mat) { int rows = mat.GetLength(0); int cols = mat.GetLength(1); // Create a result matrix of size // cols x rows for the transpose List<List<int>> tMat = new List<List<int>>(); // Fill the transposed matrix by // swapping rows with columns for (int j = 0; j < cols; j++) { List<int> row = new List<int>(); for (int i = 0; i < rows; i++) { // Assign transposed value row.Add(mat[i, j]); } tMat.Add(row); } return tMat; } public static void Main() { int[,] mat = { {1, 1, 1, 1}, {2, 2, 2, 2}, {3, 3, 3, 3}, {4, 4, 4, 4} }; List<List<int>> res = transpose(mat); int rows = res.Count; int cols = res[0].Count; for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { Console.Write(res[i][j] + " "); } Console.WriteLine(); } } }
JavaScript function transpose(mat) { const rows = mat.length; const cols = mat[0].length; // Create a result matrix of size // cols x rows for the transpose const tMat = new Array(cols).fill(0).map(() => new Array(rows).fill(0)); // Fill the transposed matrix by // swapping rows with columns for (let i = 0; i < rows; i++) { for (let j = 0; j < cols; j++) { // Assign transposed value tMat[j][i] = mat[i][j]; } } return tMat; } // Driver Code const mat = [[1, 1, 1, 1],[2, 2, 2, 2],[3, 3, 3, 3], [4, 4, 4, 4]]; const res = transpose(mat); for (const row of res) { console.log(row.join(" ")); }
Output1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
[Approach 2] Using constant space for Square Matrix O(n*n) Time and O(1) Space
This approach works only for square matrices, where the number of rows is equal to the number of columns. It is called an in-place algorithm because it performs the transposition without using any extra space.
Step by Step Implementations:
- Initialize two nested loops:
- Outer loop: i from 0 to n-1
- Inner loop: j from i+1 to n-1
This avoids diagonal and already swapped positions.
- Swap elements:
- For each pair (i, j), swap mat[i][j] with mat[j][i]
- This mirrors the elements across the main diagonal.
- Continue until all such upper-triangle elements are swapped with their lower-triangle counterparts.
C++ #include <iostream> #include <vector> using namespace std; vector<vector<int>> transpose(vector<vector<int>>& mat) { int n = mat.size(); // Traverse the upper triangle of the matrix for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { // Swap elements across the diagonal swap(mat[i][j], mat[j][i]); } } return mat; } int main() { vector<vector<int>> mat = { {1, 1, 1, 1}, {2, 2, 2, 2}, {3, 3, 3 ,3}, {4, 4, 4, 4} }; vector<vector<int>> res = transpose(mat); for (const auto& row : res) { for (int elem : row) { cout << elem << " "; } cout << endl; } return 0; }
Java import java.util.Arrays; class GfG { public static int[][] transpose(int[][] mat) { int n = mat.length; // Traverse the upper triangle of the matrix for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { // Swap elements across the diagonal int temp = mat[i][j]; mat[i][j] = mat[j][i]; mat[j][i] = temp; } } return mat; } public static void main(String[] args) { int[][] mat = { {1, 1, 1, 1}, {2, 2, 2, 2}, {3, 3, 3, 3}, {4, 4, 4, 4} }; int[][] res = transpose(mat); for (int[] row : res) { for (int elem : row) { System.out.print(elem + " "); } System.out.println(); } } }
Python def transpose(mat): # Number of rows (and columns, since it's square) n = len(mat) # Traverse the upper triangle of the matrix for i in range(n): for j in range(i + 1, n): # Swap elements across the diagonal mat[i][j], mat[j][i] = mat[j][i], mat[i][j] return mat if __name__ == "__main__": mat = [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]] res = transpose(mat) for row in res: print(" ".join(map(str, row)))
C# using System; using System.Collections.Generic; public class GfG { public static List<List<int>> transpose(int[,] mat) { // Number of rows and columns int rows = mat.GetLength(0); int cols = mat.GetLength(1); List<List<int>> result = new List<List<int>>(); // Build the transposed matrix for (int j = 0; j < cols; j++) { List<int> row = new List<int>(); for (int i = 0; i < rows; i++) { row.Add(mat[i, j]); } result.Add(row); } return result; } public static void Main() { int[,] mat = { {1, 1, 1, 1}, {2, 2, 2, 2}, {3, 3, 3 ,3}, {4, 4, 4, 4} }; List<List<int>> res = transpose(mat); int rows = res.Count; int cols = res[0].Count; for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { Console.Write(res[i][j] + " "); } Console.WriteLine(); } } }
JavaScript function transpose(mat) { // Number of rows (and columns, since it's square) const n = mat.length; // Traverse the upper triangle of the matrix for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { // Swap elements across the diagonal let temp = mat[i][j]; mat[i][j] = mat[j][i]; mat[j][i] = temp; } } return mat; } // Driver code const mat = [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]; const res = transpose(mat); for (const row of res) { console.log(row.join(" ")); }
Output1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem
My Profile