Open In App

Minimum swap required to convert binary tree to binary search tree

Last Updated : 25 Nov, 2024
Suggest changes
Share
129 Likes
Like
Report

Given an array arr[] which represents a Complete Binary Tree i.e., if index i is the parent, index 2*i + 1 is the left child and index 2*i + 2 is the right child. The task is to find the minimum number of swaps required to convert it into a Binary Search Tree.

Examples:  

Input: arr[] = [5, 6, 7, 8, 9, 10, 11]
Output: 3
Explanation:
Binary tree of the given array:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-1

Swap 1: Swap node 8 with node 5.
Swap 2: Swap node 9 with node 10.
Swap 3: Swap node 10 with node 7.

So, minimum 3 swaps are required to obtain the below binary search tree:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-3


Input: arr[] = [1, 2, 3]
Output: 1
Explanation:
Binary tree of the given array:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-2

After swapping node 1 with node 2, obtain the below binary search tree:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-4

Approach:

The idea is to use the fact that inorder traversal of Binary Search Tree is in increasing order of their value. 
So, find the inorder traversal of the Binary Tree and store it in the array and try to sort the array. The minimum number of swap required to get the array sorted will be the answer.

C++
// C++ program for Minimum swap required // to convert binary tree to binary search tree #include<bits/stdc++.h> using namespace std; // Function to perform inorder traversal of the binary tree // and store it in vector v void inorder(vector<int>& arr, vector<int>& inorderArr, int index) {    int n = arr.size();    // If index is out of bounds, return  if (index >= n)  return;  // Recursively visit left subtree  inorder(arr, inorderArr, 2 * index + 1);    // Store current node value in vector  inorderArr.push_back(arr[index]);    // Recursively visit right subtree  inorder(arr, inorderArr, 2 * index + 2); } // Function to calculate minimum swaps  // to sort inorder traversal int minSwaps(vector<int>& arr) {  int n = arr.size();  vector<int> inorderArr;    // Get the inorder traversal of the binary tree  inorder(arr, inorderArr, 0);    // Create an array of pairs to store value  // and original index  vector<pair<int, int>> t(inorderArr.size());  int ans = 0;    // Store the value and its index  for (int i = 0; i < inorderArr.size(); i++)  t[i] = {inorderArr[i], i};    // Sort the pair array based on values   // to get BST order  sort(t.begin(), t.end());    // Find minimum swaps by detecting cycles  for (int i = 0; i < t.size(); i++) {    // If the element is already in the   // correct position, continue  if (i == t[i].second)  continue;    // Otherwise, perform swaps until the element  // is in the right place  else {    // Swap elements to correct positions  swap(t[i].first, t[t[i].second].first);  swap(t[i].second, t[t[i].second].second);  }    // Check if the element is still not  // in the correct position  if (i != t[i].second)  --i;     // Increment swap count  ans++;  }    return ans; } int main() {    vector<int> arr = { 5, 6, 7, 8, 9, 10, 11 };  cout << minSwaps(arr) << endl; } 
Java
// Java program for Minimum swap required // to convert binary tree to binary search tree import java.util.Arrays; class GfG {    // Function to perform inorder traversal of the binary tree  // and store it in an array  static void inorder(int[] arr, int[] inorderArr,   int index, int[] counter) {  int n = arr.length;    // Base case: if index is out of bounds, return  if (index >= n)  return;    // Recursively visit left subtree  inorder(arr, inorderArr, 2 * index + 1, counter);    // Store current node value in the inorder array  inorderArr[counter[0]] = arr[index];  counter[0]++;    // Recursively visit right subtree  inorder(arr, inorderArr, 2 * index + 2, counter);  }  // Function to calculate minimum swaps   // to sort inorder traversal  static int minSwaps(int[] arr) {  int n = arr.length;  int[] inorderArr = new int[n];  int[] counter = new int[1];    // Get the inorder traversal of the binary tree  inorder(arr, inorderArr, 0, counter);    // Create an array of pairs to store the value   // and its original index  int[][] t = new int[n][2];  int ans = 0;    // Store the value and its original index  for (int i = 0; i < n; i++) {  t[i][0] = inorderArr[i];  t[i][1] = i;  }    // Sort the array based on values to get BST order  Arrays.sort(t, (a, b) -> Integer.compare(a[0], b[0]));    // Find minimum swaps by detecting cycles  boolean[] visited = new boolean[n];    // Iterate through the array to find cycles  for (int i = 0; i < n; i++) {    // If the element is already visited or in  // the correct place, continue  if (visited[i] || t[i][1] == i)  continue;    // Start a cycle and find the number of  // nodes in the cycle  int cycleSize = 0;  int j = i;    while (!visited[j]) {  visited[j] = true;  j = t[j][1];  cycleSize++;  }    // If there is a cycle, we need (cycleSize - 1)  // swaps to sort the cycle  if (cycleSize > 1) {  ans += (cycleSize - 1);  }  }    // Return the total number of swaps  return ans;  }  public static void main(String[] args) {  int[] arr = {5, 6, 7, 8, 9, 10, 11};   System.out.println(minSwaps(arr));  } } 
Python
# Python program for Minimum swap required # to convert binary tree to binary search tree # Function to perform inorder traversal of the binary tree # and store it in an array def inorder(arr, inorderArr, index): # If index is out of bounds, return n = len(arr) if index >= n: return # Recursively visit left subtree inorder(arr, inorderArr, 2 * index + 1) # Store current node value in inorderArr inorderArr.append(arr[index]) # Recursively visit right subtree inorder(arr, inorderArr, 2 * index + 2) # Function to calculate minimum swaps  # to sort inorder traversal def minSwaps(arr): inorderArr = [] # Get the inorder traversal of the binary tree inorder(arr, inorderArr, 0) # Create a list of pairs to store value and original index t = [(inorderArr[i], i) for i in range(len(inorderArr))] ans = 0 # Sort the list of pairs based on values # to get BST order t.sort() # Initialize visited array visited = [False] * len(t) # Find minimum swaps by detecting cycles for i in range(len(t)): # If already visited or already in the # correct place, skip if visited[i] or t[i][1] == i: continue # Start a cycle and find the number of  # nodes in the cycle cycleSize = 0 j = i # Process all elements in the cycle while not visited[j]: visited[j] = True j = t[j][1] cycleSize += 1 # If there is a cycle of size `cycle_size`, we  # need `cycle_size - 1` swaps if cycleSize > 1: ans += (cycleSize - 1) # Return total number of swaps return ans if __name__ == "__main__": arr = [5, 6, 7, 8, 9, 10, 11] print(minSwaps(arr)) 
C#
// C# program for Minimum swap required // to convert binary tree to binary search tree using System; using System.Linq; class GfG {    // Function to perform inorder traversal of the binary tree  // and store it in an array  static void Inorder(int[] arr, int[] inorderArr, int index, ref int counter) {  int n = arr.Length;  // Base case: if index is out of bounds, return  if (index >= n)  return;  // Recursively visit left subtree  Inorder(arr, inorderArr, 2 * index + 1, ref counter);  // Store current node value in inorderArr  inorderArr[counter] = arr[index];  counter++;  // Recursively visit right subtree  Inorder(arr, inorderArr, 2 * index + 2, ref counter);  }  // Function to calculate minimum  // swaps to sort inorder traversal  static int MinSwaps(int[] arr) {  int n = arr.Length;  int[] inorderArr = new int[n];  int counter = 0;  // Get the inorder traversal of the binary tree  Inorder(arr, inorderArr, 0, ref counter);  // Create an array of pairs to store value   // and original index  var t = new (int, int)[n];  for (int i = 0; i < n; i++) {  t[i] = (inorderArr[i], i);  }  // Sort the array based on values to get BST order  Array.Sort(t, (a, b) => a.Item1.CompareTo(b.Item1));  // Initialize visited array  bool[] visited = new bool[n];  int ans = 0;  // Find minimum swaps by detecting cycles  for (int i = 0; i < n; i++) {    // If already visited or already in   // the correct place, skip  if (visited[i] || t[i].Item2 == i)  continue;  // Start a cycle and find the number   // of nodes in the cycle  int cycleSize = 0;  int j = i;  // Process all elements in the cycle  while (!visited[j]) {  visited[j] = true;  j = t[j].Item2;  cycleSize++;  }  // If there is a cycle of size `cycle_size`, we  // need `cycle_size - 1` swaps  if (cycleSize > 1)  {  ans += (cycleSize - 1);  }  }  // Return total number of swaps  return ans;  }  static void Main(string[] args) {    int[] arr = { 5, 6, 7, 8, 9, 10, 11 };  Console.WriteLine(MinSwaps(arr));  } } 
JavaScript
// Javascript program for Minimum swap required // to convert binary tree to binary search tree // Inorder traversal to get values in sorted order function inorder(arr, inorderArr, index) {  // If index is out of bounds, return  if (index >= arr.length)  return;  // Recursively visit left subtree  inorder(arr, inorderArr, 2 * index + 1);  // Store current node value in array  inorderArr.push(arr[index]);  // Recursively visit right subtree  inorder(arr, inorderArr, 2 * index + 2); } // Function to calculate minimum swaps to sort inorder // traversal function minSwaps(arr) {  let inorderArr = [];  // Get the inorder traversal of the binary tree  inorder(arr, inorderArr, 0);  // Create an array of pairs to store value and original  // index  let t = inorderArr.map((val, i) => [val, i]);  let ans = 0;  // Sort the pair array based on values to get BST order  t.sort((a, b) => a[0] - b[0]);  // Find minimum swaps by detecting cycles  let visited = Array(arr.length)  .fill(false);  for (let i = 0; i < t.length; i++) {    // If the element is already in the correct  // position, continue  if (visited[i] || t[i][1] === i)  continue;  // Otherwise, perform swaps until the element is in  // the right place  let cycleSize = 0;  let j = i;  while (!visited[j]) {  visited[j] = true;  j = t[j][1];  cycleSize++;  }  // If there is a cycle, we need (cycleSize - 1)  // swaps to sort the cycle  if (cycleSize > 1) {  ans += (cycleSize - 1);  }  }  // Return total number of swaps  return ans; } let arr = [ 5, 6, 7, 8, 9, 10, 11 ]; console.log(minSwaps(arr)); 

Output
3 

Time Complexity: O(n*logn) where n is the number of elements in array.
Auxiliary Space: O(n) because it is using extra space for array 

Exercise: Can we extend this to normal binary tree, i.e., a binary tree represented using left and right pointers, and not necessarily complete?


Article Tags :

Explore