Open In App

Minimum cost to traverse from one index to another in the String

Last Updated : 01 Feb, 2023
Suggest changes
Share
Like Article
Like
Report

Given a string S of length N consisting of lower case character, the task is to find the minimum cost to reach from index i to index j
At any index k, the cost to jump to the index k+1 and k-1(without going out of bounds) is 1. 
Additionally, the cost to jump to any index m such that S[m] = S[k] is 0. 


Examples:  

Input : S = "abcde", i = 0, j = 4 
Output :
Explanation: 
The shortest path will be: 
0->1->2->3->4 
Thus, the answer will be 4.


Input : S = "abcdefb", i = 0, j = 5 
Output :
Explanation: 
0->1->6->5 
0->1 edge weight is 1, 1->6 edge weight is 0, and 6->5 edge weight is 1. 
Thus, the answer will be 2  

Approach:  

  1. One approach to solve this problem is 0-1 BFS.
  2. The setup can be visualized as a graph with N nodes.
  3. All the nodes will be connected to adjacent nodes with an edge of the weight of '1' and nodes with the same characters with an edge with weight '0'.
  4. In this setup, 0-1 BFS can be run to find the shortest path from index 'i' to index 'j'.

Time complexity: O(N^2) - As the number of vertices would be of O(N^2)


Efficient Approach: 
 

  1. For each character X, all the characters are found for which it is adjacent.
  2. A graph is created with the number of nodes as the number of distinct characters in the string, each representing a character.
  3. Each node X will have an edge of weight 1 with all the nodes representing characters adjacent to character X.
  4. Then BFS can be run from nodes representing S[i] to nodes representing S[j] in this new graph

Time complexity: O(N)


Below is the implementation of the above approach:  

C++
// C++ implementation of the above approach. #include <bits/stdc++.h> using namespace std; // function to find the minimum cost int findMinCost(string s, int i, int j) {  // graph  vector<vector<int> > gr(26);  // adjacency matrix  bool edge[26][26];  // initialising adjacency matrix  for (int k = 0; k < 26; k++)  for (int l = 0; l < 26; l++)  edge[k][l] = 0;  // creating adjacency list  for (int k = 0; k < s.size(); k++) {  // pushing left adjacent element for index 'k'  if (k - 1 >= 0  and !edge[s[k] - 97][s[k - 1] - 97])  gr[s[k] - 97].push_back(s[k - 1] - 97),  edge[s[k] - 97][s[k - 1] - 97] = 1;  // pushing right adjacent element for index 'k'  if (k + 1 <= s.size() - 1  and !edge[s[k] - 97][s[k + 1] - 97])  gr[s[k] - 97].push_back(s[k + 1] - 97),  edge[s[k] - 97][s[k + 1] - 97] = 1;  }  // queue to perform BFS  queue<int> q;  q.push(s[i] - 97);  // visited array  bool v[26] = { 0 };  // variable to store depth of BFS  int d = 0;  // BFS  while (q.size()) {  // number of elements in the current level  int cnt = q.size();  // inner loop  while (cnt--) {  // current element  int curr = q.front();  // popping queue  q.pop();  // base case  if (v[curr])  continue;  v[curr] = 1;  // checking if the current node is required node  if (curr == s[j] - 97)  return d;  // iterating through the current node  for (auto it : gr[curr])  q.push(it);  }  // updating depth  d++;  }  return -1; } // Driver Code int main() {  // input variables  string s = "abcde";  int i = 0;  int j = 4;  // function to find the minimum cost  cout << findMinCost(s, i, j); } 
Java
// Java implementation of the above approach. import java.util.*; class GFG  {  // function to find the minimum cost  static int findMinCost(char[] s, int i, int j)   {  // graph  Vector<Integer>[] gr = new Vector[26];  for (int iN = 0; iN < 26; iN++)  gr[iN] = new Vector<Integer>();    // adjacency matrix  boolean[][] edge = new boolean[26][26];  // initialising adjacency matrix  for (int k = 0; k < 26; k++)  for (int l = 0; l < 26; l++)  edge[k][l] = false;  // creating adjacency list  for (int k = 0; k < s.length; k++)   {  // pushing left adjacent element for index 'k'  if (k - 1 >= 0 && !edge[s[k] - 97][s[k - 1] - 97])   {  gr[s[k] - 97].add(s[k - 1] - 97);  edge[s[k] - 97][s[k - 1] - 97] = true;  }  // pushing right adjacent element for index 'k'  if (k + 1 <= s.length - 1 && !edge[s[k] - 97][s[k + 1] - 97])   {  gr[s[k] - 97].add(s[k + 1] - 97);  edge[s[k] - 97][s[k + 1] - 97] = true;  }  }  // queue to perform BFS  Queue<Integer> q = new LinkedList<Integer>();  q.add(s[i] - 97);  // visited array  boolean[] v = new boolean[26];  // variable to store depth of BFS  int d = 0;  // BFS  while (q.size() > 0)   {  // number of elements in the current level  int cnt = q.size();  // inner loop  while (cnt-- > 0)   {  // current element  int curr = q.peek();  // popping queue  q.remove();  // base case  if (v[curr])  continue;  v[curr] = true;  // checking if the current node is required node  if (curr == s[j] - 97)  return d;  // iterating through the current node  for (Integer it : gr[curr])  q.add(it);  }  // updating depth  d++;  }  return -1;  }  // Driver Code  public static void main(String[] args)  {  // input variables  String s = "abcde";  int i = 0;  int j = 4;  // function to find the minimum cost  System.out.print(findMinCost(s.toCharArray(), i, j));  } } // This code is contributed by 29AjayKumar 
Python3
# Python3 implementation of the above approach. from collections import deque as a queue # function to find minimum cost def findMinCost(s, i, j): # graph gr = [[] for i in range(26)] # adjacency matrix edge = [[ 0 for i in range(26)] for i in range(26)] # initialising adjacency matrix for k in range(26): for l in range(26): edge[k][l] = 0 # creating adjacency list for k in range(len(s)): # pushing left adjacent element for index 'k' if (k - 1 >= 0 and edge[ord(s[k]) - 97][ord(s[k - 1]) - 97] == 0): gr[ord(s[k]) - 97].append(ord(s[k - 1]) - 97) edge[ord(s[k]) - 97][ord(s[k - 1]) - 97] = 1 # pushing right adjacent element for index 'k' if (k + 1 <= len(s) - 1 and edge[ord(s[k]) - 97][ord(s[k + 1]) - 97] == 0): gr[ord(s[k]) - 97].append(ord(s[k + 1]) - 97) edge[ord(s[k]) - 97][ord(s[k + 1]) - 97] = 1 # queue to perform BFS q = queue() q.append(ord(s[i]) - 97) # visited array v = [0] * (26) # variable to store depth of BFS d = 0 # BFS while (len(q)): # number of elements in the current level cnt = len(q) # inner loop while (cnt > 0): # current element curr = q.popleft() # base case if (v[curr] == 1): continue v[curr] = 1 # checking if the current node is required node if (curr == ord(s[j]) - 97): return curr # iterating through the current node for it in gr[curr]: q.append(it) print() cnt -= 1 # updating depth d = d + 1 return -1 # Driver Code # input variables s = "abcde" i = 0 j = 4 # function to find the minimum cost print(findMinCost(s, i, j)) # This code is contributed by mohit kumar 29 
C#
// C# implementation of the above approach. using System; using System.Collections.Generic; class GFG  {  // function to find the minimum cost  static int findMinCost(char[] s, int i, int j)   {  // graph  List<int>[] gr = new List<int>[26];  for (int iN = 0; iN < 26; iN++)  gr[iN] = new List<int>();    // adjacency matrix  bool[,] edge = new bool[26, 26];  // initialising adjacency matrix  for (int k = 0; k < 26; k++)  for (int l = 0; l < 26; l++)  edge[k, l] = false;  // creating adjacency list  for (int k = 0; k < s.Length; k++)   {  // pushing left adjacent element for index 'k'  if (k - 1 >= 0 && !edge[s[k] - 97, s[k - 1] - 97])   {  gr[s[k] - 97].Add(s[k - 1] - 97);  edge[s[k] - 97, s[k - 1] - 97] = true;  }    // pushing right adjacent element for index 'k'  if (k + 1 <= s.Length - 1 &&   !edge[s[k] - 97, s[k + 1] - 97])   {  gr[s[k] - 97].Add(s[k + 1] - 97);  edge[s[k] - 97, s[k + 1] - 97] = true;  }  }  // queue to perform BFS  Queue<int> q = new Queue<int>();  q.Enqueue(s[i] - 97);  // visited array  bool[] v = new bool[26];  // variable to store depth of BFS  int d = 0;  // BFS  while (q.Count > 0)   {  // number of elements in the current level  int cnt = q.Count;  // inner loop  while (cnt-- > 0)   {  // current element  int curr = q.Peek();  // popping queue  q.Dequeue();  // base case  if (v[curr])  continue;  v[curr] = true;  // checking if the current node is required node  if (curr == s[j] - 97)  return d;  // iterating through the current node  foreach (int it in gr[curr])  q.Enqueue(it);  }  // updating depth  d++;  }  return -1;  }  // Driver Code  public static void Main(String[] args)  {  // input variables  String s = "abcde";  int i = 0;  int j = 4;  // function to find the minimum cost  Console.Write(findMinCost(s.ToCharArray(), i, j));  } } // This code is contributed by 29AjayKumar 
JavaScript
<script> // Javascript implementation of the above approach. // function to find the minimum cost function findMinCost(s,i, j) {  // graph  var gr = Array.from(Array(26), ()=> new Array());  // adjacency matrix  var edge = Array.from(Array(26), ()=> Array(26));  // initialising adjacency matrix  for (var k = 0; k < 26; k++)  for (var l = 0; l < 26; l++)  edge[k][l] = 0;  // creating adjacency list  for (var k = 0; k < s.length; k++) {  // pushing left adjacent element for index 'k'  if (k - 1 >= 0  && !edge[s[k].charCodeAt(0) - 97][s[k - 1].charCodeAt(0) - 97])  gr[s[k].charCodeAt(0) - 97].push(s[k - 1].charCodeAt(0) - 97),  edge[s[k].charCodeAt(0) - 97][s[k - 1].charCodeAt(0) - 97] = 1;  // pushing right adjacent element for index 'k'  if (k + 1 <= s.length - 1  && !edge[s[k].charCodeAt(0) - 97][s[k + 1].charCodeAt(0) - 97])  gr[s[k].charCodeAt(0) - 97].push(s[k + 1].charCodeAt(0) - 97),  edge[s[k].charCodeAt(0) - 97][s[k + 1].charCodeAt(0) - 97] = 1;  }  // queue to perform BFS  var q = [];  q.push(s[i].charCodeAt(0) - 97);  // visited array  var v = Array(26).fill(0);  // variable to store depth of BFS  var d = 0;  // BFS  while (q.length>0) {  // number of elements in the current level  var cnt = q.length;  // inner loop  while (cnt-->0) {  // current element  var curr = q[0];  // popping queue  q.shift();  // base case  if (v[curr])  continue;  v[curr] = 1;  // checking if the current node is required node  if (curr == s[j].charCodeAt(0) - 97)  return d;  // iterating through the current node  for(var it =0 ;it< gr[curr].length; it++)  {  q.push(gr[curr][it]);  }   }  // updating depth  d++;  }  return -1; } // Driver Code // input variables var s = "abcde"; var i = 0; var j = 4; // function to find the minimum cost document.write( findMinCost(s, i, j)); </script>  

Output:  

4

Time complexity : O(26 * |s|) because for each letter in the alphabet, a BFS is performed through the string 's' to find the minimum cost between the two given indices i and j. 

Space complexity :O(26 * |s|) because a queue of size |s| is used to store nodes in the BFS and a visited array of size 26 is used to keep track of visited nodes.


Similar Reads

Article Tags :
Practice Tags :