Given an array arr[] of size N, the task is to find the maximum sum non-empty subsequence present in the given array.
Examples:
Input: arr[] = { 2, 3, 7, 1, 9 }
Output: 22
Explanation:
Sum of the subsequence { arr[0], arr[1], arr[2], arr[3], arr[4] } is equal to 22, which is the maximum possible sum of any subsequence of the array.
Therefore, the required output is 22.
Input: arr[] = { -2, 11, -4, 2, -3, -10 }
Output: 13
Explanation:
Sum of the subsequence { arr[1], arr[3] } is equal to 13, which is the maximum possible sum of any subsequence of the array.
Therefore, the required output is 13.
Naive Approach: The simplest approach to solve this problem is to generate all possible non-empty subsequences of the array and calculate the sum of each subsequence of the array. Finally, print the maximum sum obtained from the subsequence.
Time Complexity: O(N * 2N)
Auxiliary Space: O(N)
Efficient Approach: The idea is to traverse the array and calculate the sum of positive elements of the array and print the sum obtained. Follow the steps below to solve the problem:
Below is the implementation of the above approach:
C++ // C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to print the maximum // non-empty subsequence sum int MaxNonEmpSubSeq(int a[], int n) { // Stores the maximum non-empty // subsequence sum in an array int sum = 0; // Stores the largest element // in the array int max = *max_element(a, a + n); if (max <= 0) { return max; } // Traverse the array for (int i = 0; i < n; i++) { // If a[i] is greater than 0 if (a[i] > 0) { // Update sum sum += a[i]; } } return sum; } // Driver Code int main() { int arr[] = { -2, 11, -4, 2, -3, -10 }; int N = sizeof(arr) / sizeof(arr[0]); cout << MaxNonEmpSubSeq(arr, N); return 0; } Java // Java program to implement // the above approach import java.util.*; class GFG { // Function to print the maximum // non-empty subsequence sum static int MaxNonEmpSubSeq(int a[], int n) { // Stores the maximum non-empty // subsequence sum in an array int sum = 0; // Stores the largest element // in the array int max = a[0]; for(int i = 1; i < n; i++) { if(max < a[i]) { max = a[i]; } } if (max <= 0) { return max; } // Traverse the array for (int i = 0; i < n; i++) { // If a[i] is greater than 0 if (a[i] > 0) { // Update sum sum += a[i]; } } return sum; } // Driver code public static void main(String[] args) { int arr[] = { -2, 11, -4, 2, -3, -10 }; int N = arr.length; System.out.println(MaxNonEmpSubSeq(arr, N)); } } // This code is contributed by divyesh072019 Python3 # Python3 program to implement # the above approach # Function to print the maximum # non-empty subsequence sum def MaxNonEmpSubSeq(a, n): # Stores the maximum non-empty # subsequence sum in an array sum = 0 # Stores the largest element # in the array maxm = max(a) if (maxm <= 0): return maxm # Traverse the array for i in range(n): # If a[i] is greater than 0 if (a[i] > 0): # Update sum sum += a[i] return sum # Driver Code if __name__ == '__main__': arr = [ -2, 11, -4, 2, -3, -10 ] N = len(arr) print(MaxNonEmpSubSeq(arr, N)) # This code is contributed by mohit kumar 29
C# // C# program to implement // the above approach using System; class GFG{ // Function to print the maximum // non-empty subsequence sum static int MaxNonEmpSubSeq(int[] a, int n) { // Stores the maximum non-empty // subsequence sum in an array int sum = 0; // Stores the largest element // in the array int max = a[0]; for(int i = 1; i < n; i++) { if (max < a[i]) { max = a[i]; } } if (max <= 0) { return max; } // Traverse the array for(int i = 0; i < n; i++) { // If a[i] is greater than 0 if (a[i] > 0) { // Update sum sum += a[i]; } } return sum; } // Driver Code static void Main() { int[] arr = { -2, 11, -4, 2, -3, -10 }; int N = arr.Length; Console.WriteLine(MaxNonEmpSubSeq(arr, N)); } } // This code is contributed by divyeshrabadiya07 JavaScript <script> // Javascript program to implement // the above approach // Function to print the maximum // non-empty subsequence sum function MaxNonEmpSubSeq(a, n) { // Stores the maximum non-empty // subsequence sum in an array let sum = 0; // Stores the largest element // in the array let max = a[0]; for(let i = 1; i < n; i++) { if (max < a[i]) { max = a[i]; } } if (max <= 0) { return max; } // Traverse the array for(let i = 0; i < n; i++) { // If a[i] is greater than 0 if (a[i] > 0) { // Update sum sum += a[i]; } } return sum; } let arr = [ -2, 11, -4, 2, -3, -10 ]; let N = arr.length; document.write(MaxNonEmpSubSeq(arr, N)); </script> Time Complexity: O(N)
Auxiliary Space: O(1)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem
My Profile