Java Program For Selecting A Random Node From A Singly Linked List
Last Updated : 21 Jul, 2022
Given a singly linked list, select a random node from the linked list (the probability of picking a node should be 1/N if there are N nodes in the list). You are given a random number generator.
Below is a Simple Solution:
- Count the number of nodes by traversing the list.
- Traverse the list again and select every node with probability 1/N. The selection can be done by generating a random number from 0 to N-i for i'th node, and selecting the i'th node only if the generated number is equal to 0 (or any other fixed number from 0 to N-i).
We get uniform probabilities with the above schemes.
i = 1, probability of selecting first node = 1/N i = 2, probability of selecting second node = [probability that first node is not selected] * [probability that second node is selected] = ((N-1)/N)* 1/(N-1) = 1/N
Similarly, probabilities of other selecting other nodes is 1/N
The above solution requires two traversals of linked list.
How to select a random node with only one traversal allowed?
The idea is to use Reservoir Sampling. Following are the steps. This is a simpler version of Reservoir Sampling as we need to select only one key instead of k keys.
(1) Initialize result as first node result = head->key (2) Initialize n = 2 (3) Now one by one consider all nodes from 2nd node onward. (a) Generate a random number from 0 to n-1. Let the generated random number is j. (b) If j is equal to 0 (we could choose other fixed numbers between 0 to n-1), then replace result with the current node. (c) n = n+1 (d) current = current->next
Below is the implementation of above algorithm.
Java // Java program to select a random // node from singly linked list import java.util.*; // Linked List Class class LinkedList { // head of list static Node head; // Node Class static class Node { int data; Node next; // Constructor to create // a new node Node(int d) { data = d; next = null; } } // A reservoir sampling-based function // to print a random node from a // linked list void printrandom(Node node) { // If list is empty if (node == null) { return; } // Use a different seed value so // that we don't get same result // each time we run this program Math.abs(UUID.randomUUID().getMostSignificantBits()); // Initialize result as first node int result = node.data; // Iterate from the (k+1)th element // to nth element Node current = node; int n; for (n = 2; current != null; n++) { // change result with // probability 1/n if (Math.random() % n == 0) { result = current.data; } // Move to next node current = current.next; } System.out.println( "Randomly selected key is " + result); } // Driver code public static void main(String[] args) { LinkedList list = new LinkedList(); list.head = new Node(5); list.head.next = new Node(20); list.head.next.next = new Node(4); list.head.next.next.next = new Node(3); list.head.next.next.next.next = new Node(30); list.printrandom(head); } } // This code is contributed by Mayank Jaiswal
Time Complexity: O(n), as we are using a loop to traverse n times. Where n is the number of nodes in the linked list.
Auxiliary Space: O(1), as we are not using any extra space.
Note that the above program is based on the outcome of a random function and may produce different output.
How does this work?
Let there be total N nodes in list. It is easier to understand from the last node.
The probability that the last node is result simply 1/N [For last or N'th node, we generate a random number between 0 to N-1 and make the last node as a result if the generated number is 0 (or any other fixed number]
The probability that second last node is result should also be 1/N.
The probability that the second last node is result = [Probability that the second last node replaces result] X [Probability that the last node doesn't replace the result] = [1 / (N-1)] * [(N-1)/N] = 1/N
Similarly, we can show probability for 3rd last node and other nodes. Please refer complete article on Select a Random Node from a Singly Linked List for more details!
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read