Open In App

Implement a stack using single queue

Last Updated : 23 Jul, 2025
Suggest changes
Share
Like Article
Like
Report

We are given a queue data structure, the task is to implement a stack using a single queue.

Also Read: Stack using two queues

The idea is to keep the newly inserted element always at the front of the queue, preserving the order of previous elements by appending the new element at the back and rotating the queue by size n so that the new item is at the front.

// Push an element x in the stack s
push(s, x)
1) Let size of q be s.
1) Enqueue x to q
2) One by one Dequeue s items from queue and enqueue them.

// pop an item from stack s
pop(s)
1) Dequeue an item from q

C++
#include<bits/stdc++.h> using namespace std; // User defined stack that uses a queue class Stack {  queue<int>q; public:  void push(int val);  void pop();  int top();  bool empty(); }; // Push operation void Stack::push(int val) {  // Get previous size of queue  int s = q.size();  // Push current element  q.push(val);  // Pop (or Dequeue) all previous  // elements and put them after current  // element  for (int i=0; i<s; i++)  {  // this will add front element into  // rear of queue  q.push(q.front());  // this will delete front element  q.pop();  } } // Removes the top element void Stack::pop() {  if (q.empty())  cout << "No elements\n";  else  q.pop(); } // Returns top of stack int Stack::top() {  return (q.empty())? -1 : q.front(); } // Returns true if Stack is empty else false bool Stack::empty() {  return (q.empty()); } // Driver code int main() {  Stack s;  s.push(10);  s.push(20);  cout << s.top() << endl;  s.pop();  s.push(30);  s.pop();  cout << s.top() << endl;  return 0; } 
Java
import java.util.LinkedList; import java.util.Queue; public class stack  {  Queue<Integer> q = new LinkedList<Integer>();    // Push operation  void push(int val)   {  // get previous size of queue  int size = q.size();    // Add current element  q.add(val);    // Pop (or Dequeue) all previous  // elements and put them after current  // element  for (int i = 0; i < size; i++)   {  // this will add front element into  // rear of queue  int x = q.remove();  q.add(x);  }  }    // Removes the top element  int pop()   {  if (q.isEmpty())   {  System.out.println("No elements");  return -1;  }  int x = q.remove();  return x;  }    // Returns top of stack  int top()   {  if (q.isEmpty())  return -1;  return q.peek();  }    // Returns true if Stack is empty else false  boolean isEmpty()   {  return q.isEmpty();  }  // Driver program to test above methods  public static void main(String[] args)   {  stack s = new stack();  s.push(10);  s.push(20);  System.out.println(s.top());  s.pop();  s.push(30);  s.pop();  System.out.println(s.top());  } } 
Python
q = [] # append operation  def append(val): # get previous size of queue  size = len(q) # Add current element  q.append(val); # Pop (or Dequeue) all previous  # elements and put them after current # element for i in range(size): # this will add front element into  # rear of queue  x = q.pop(0); q.append(x); # Removes the top element  def pop(): if (len(q) == 0): print("No elements"); return -1; x = q.pop(0); return x; # Returns top of stack  def top(): if(len(q) == 0): return -1; return q[-1] # Returns true if Stack is empty else false  def isEmpty(): return len(q)==0; # Driver program to test above methods  if __name__=='__main__': s = [] s.append(10); s.append(20); print(str(s[-1])); s.pop(); s.append(30); s.pop(); print(str(s[-1])); 
C#
using System; using System.Collections.Generic; public class stack  {  Queue<int> q = new Queue<int>();    // Push operation  void push(int val)   {  // get previous size of queue  int size = q.Count;    // Add current element  q.Enqueue(val);    // Pop (or Dequeue) all previous  // elements and put them after current  // element  for (int i = 0; i < size; i++)   {  // this will add front element into  // rear of queue  int x = q.Dequeue();  q.Enqueue(x);  }  }    // Removes the top element  int pop()   {  if (q.Count == 0)   {  Console.WriteLine("No elements");  return -1;  }  int x = q.Dequeue();  return x;  }    // Returns top of stack  int top()   {  if (q.Count == 0)  return -1;  return q.Peek();  }    // Returns true if Stack is empty else false  bool isEmpty()   {  if(q.Count == 0)  return true;  return false;  }  // Driver program to test above methods  public static void Main(String[] args)   {  stack s = new stack();  s.push(10);  s.push(20);  Console.WriteLine(s.top());  s.pop();  s.push(30);  s.pop();  Console.WriteLine(s.top());  } } 
JavaScript
let q = [];   // Push operation function Push(val) {  // get previous size of queue  let Size = q.length;    // Add current element  q.push(val);    // Pop (or Dequeue) all previous  // elements and put them after current  // element  for (let i = 0; i < Size; i++)  {  // this will add front element into  // rear of queue  let x = q[0];  q.shift();  q.push(x);  } } // Removes the top element function Pop() {  if (isEmpty())  {  console.log("No elements" + "</br>");  return -1;  }  let x = q[0];  q.shift();  return x; }   // Returns top of stack function Top() {  if (isEmpty())  return -1;  return q[0]; } // Returns true if Stack is empty else false function isEmpty() {  if(q.length == 0)  return true;  return false; } Push(10); Push(20); console.log(Top()); Pop(); Push(30); Pop(); console.log(Top()); 

Output
20 10

Time complexity

For Push Operations: O(n) as we need to rotate the queue to bring the newly added element to the front. ( where n is the size of the queue )
For Pop Operations: O(1)

Auxiliary Space: O(n)


Article Tags :

Explore