Open In App

Generate an array having sum of Euler Totient Function of all elements equal to N

Last Updated : 17 Jan, 2022
Suggest changes
Share
Like Article
Like
Report

Given a positive integer N, the task is to generate an array such that the sum of the Euler Totient Function of each element is equal to N.

Examples:

Input: N = 6
Output: 1 6 2 3

Input: N = 12
Output: 1 12 2 6 3 4

 

Approach: The given problem can be solved based on the divisor sum property of the Euler Totient Function, i.e.,

Below is the implementation of the above approach:

C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to construct the array such // the sum of values of Euler Totient // functions of all array elements is N void constructArray(int N) {  // Stores the resultant array  vector<int> ans;  // Find divisors in sqrt(N)  for (int i = 1; i * i <= N; i++) {  // If N is divisible by i  if (N % i == 0) {  // Push the current divisor  ans.push_back(i);  // If N is not a  // perfect square  if (N != (i * i)) {  // Push the second divisor  ans.push_back(N / i);  }  }  }  // Print the resultant array  for (auto it : ans) {  cout << it << " ";  } } // Driver Code int main() {  int N = 12;  // Function Call  constructArray(N);  return 0; } 
Java
// Java program for the above approach import java.util.*; class GFG{   // Function to construct the array such // the sum of values of Euler Totient // functions of all array elements is N static void constructArray(int N) {    // Stores the resultant array  ArrayList<Integer> ans = new ArrayList<Integer>();  // Find divisors in sqrt(N)  for(int i = 1; i * i <= N; i++)  {    // If N is divisible by i  if (N % i == 0)   {    // Push the current divisor  ans.add(i);  // If N is not a  // perfect square  if (N != (i * i))   {    // Push the second divisor  ans.add(N / i);  }  }  }  // Print the resultant array  for(int it : ans)   {   System.out.print(it + " ");  } } // Driver Code public static void main(String[] args) {  int N = 12;  // Function Call  constructArray(N); } } // This code is contributed by splevel62 
Python3
# Python3 program for the above approach from math import sqrt # Function to construct the array such # the sum of values of Euler Totient # functions of all array elements is N def constructArray(N): # Stores the resultant array ans = [] # Find divisors in sqrt(N) for i in range(1, int(sqrt(N)) + 1, 1): # If N is divisible by i if (N % i == 0): # Push the current divisor ans.append(i) # If N is not a # perfect square if (N != (i * i)): # Push the second divisor ans.append(N / i) # Print the resultant array for it in ans: print(int(it), end = " ") # Driver Code if __name__ == '__main__': N = 12 # Function Call constructArray(N) # This code is contributed by ipg2016107 
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{   // Function to construct the array such // the sum of values of Euler Totient // functions of all array elements is N static void constructArray(int N) {    // Stores the resultant array  List<int> ans = new List<int>();  // Find divisors in sqrt(N)  for(int i = 1; i * i <= N; i++)  {    // If N is divisible by i  if (N % i == 0)   {    // Push the current divisor  ans.Add(i);  // If N is not a  // perfect square  if (N != (i * i))   {    // Push the second divisor  ans.Add(N / i);  }  }  }  // Print the resultant array  foreach(int it in ans)   {   Console.Write(it + " ");  } } // Driver Code public static void Main() {  int N = 12;  // Function Call  constructArray(N); } } // This code is contributed by ukasp 
JavaScript
<script> // javascript program for the above approach   // Function to construct the array such // the sum of values of Euler Totient // functions of all array elements is N function constructArray(N) {    // Stores the resultant array  var ans = [];  // Find divisors in sqrt(N)  for(var i = 1; i * i <= N; i++)  {    // If N is divisible by i  if (N % i == 0)   {    // Push the current divisor  ans.push(i);  // If N is not a  // perfect square  if (N != (i * i))   {    // Push the second divisor  ans.push(N / i);  }  }  }  // Print the resultant array  document.write(ans); } // Driver Code var N = 12; // Function Call constructArray(N); // This code contributed by shikhasingrajput  </script> 

Output: 
1 12 2 6 3 4

 

Time Complexity: O(√N)
Auxiliary Space: O(N)


Next Article

Similar Reads