Open In App

Decimal to binary conversion without using arithmetic operators

Last Updated : 06 Dec, 2023
Suggest changes
Share
Like Article
Like
Report

Find the binary equivalent of the given non-negative number n without using arithmetic operators.

Examples: 

Input : n = 10
Output : 1010

Input : n = 38
Output : 100110

Note that + in below algorithm/program is used for concatenation purpose. 
Algorithm: 

decToBin(n)
if n == 0
return "0"
Declare bin = ""
Declare ch
while n > 0
if (n & 1) == 0
ch = '0'
else
ch = '1'
bin = ch + bin
n = n >> 1
return bin


 Below is the implementation of above approach:

C++
// C++ implementation of decimal to binary conversion // without using arithmetic operators #include <bits/stdc++.h> using namespace std; // function for decimal to binary conversion // without using arithmetic operators string decToBin(int n) {  if (n == 0)  return "0";    // to store the binary equivalent of decimal  string bin = "";   while (n > 0)   {  // to get the last binary digit of the number 'n'  // and accumulate it at the beginning of 'bin'  bin = ((n & 1) == 0 ? '0' : '1') + bin;    // right shift 'n' by 1  n >>= 1;  }    // required binary number  return bin; } // Driver program to test above int main() {  int n = 38;  cout << decToBin(n);  return 0; }  
Java
// Java implementation of decimal  // to binary conversion without // using arithmetic operators import java.io.*; class GFG {    // function for decimal to   // binary conversion without  // using arithmetic operators  static String decToBin(int n)  {  if (n == 0)  return "0";    // to store the binary   // equivalent of decimal  String bin = "";     while (n > 0)   {  // to get the last binary digit   // of the number 'n' and accumulate   // it at the beginning of 'bin'  bin = ((n & 1) == 0 ? '0' : '1') + bin;    // right shift 'n' by 1  n >>= 1;  }    // required binary number  return bin;  }  // Driver program to test above  public static void main (String[] args) {  int n = 38;  System.out.println(decToBin(n));  } }  // This code is contributed by vt_m 
Python3
# Python3 implementation of  # decimal to binary conversion # without using arithmetic operators # function for decimal to  # binary conversion without  # using arithmetic operators def decToBin(n): if(n == 0): return "0"; # to store the binary # equivalent of decimal bin = ""; while (n > 0): # to get the last binary # digit of the number 'n' # and accumulate it at  # the beginning of 'bin' if (n & 1 == 0): bin = '0' + bin; else: bin = '1' + bin; # right shift 'n' by 1 # It also gives n//2 . n = n >> 1; # required binary number return bin; # Driver Code n = 38; print(decToBin(n)); # This code is contributed # by mits 
C#
// C# implementation of decimal // to binary conversion without // using arithmetic operators using System; class GFG {    // function for decimal to  // binary conversion without  // using arithmetic operators  static String decToBin(int n)  {  if (n == 0)  return "0";  // to store the binary  // equivalent of decimal  String bin = "";  while (n > 0) {    // to get the last binary digit  // of the number 'n' and accumulate  // it at the beginning of 'bin'  bin = ((n & 1) == 0 ? '0' : '1') + bin;  // right shift 'n' by 1  n >>= 1;  }  // required binary number  return bin;  }  // Driver program to test above  public static void Main()  {  int n = 38;  Console.WriteLine(decToBin(n));  } } // This code is contributed by Sam007 
JavaScript
<script> // javascript implementation of decimal  // to binary conversion without // using arithmetic operators   // function for decimal to  // binary conversion without // using arithmetic operators function decToBin(n) {  if (n == 0)  return "0";  // to store the binary   // equivalent of decimal  var bin = "";     while (n > 0)   {  // to get the last binary digit   // of the number 'n' and accumulate   // it at the beginning of 'bin'  bin = ((n & 1) == 0 ? '0' : '1') + bin;    // right shift 'n' by 1  n >>= 1;  }    // required binary number  return bin; } // Driver program to test above var n = 38; document.write(decToBin(n)); // This code is contributed by shikhasingrajput  </script> 
PHP
<?php // PHP implementation of decimal  // to binary conversion without  // using arithmetic operators // function for decimal to  // binary conversion without  // using arithmetic operators function decToBin($n) { if ($n == 0) return "0"; // to store the binary  // equivalent of decimal $bin = ""; while ($n > 0) { // to get the last binary  // digit of the number 'n' // and accumulate it at // the beginning of 'bin' $bin = (($n & 1) == 0 ? '0' : '1') . $bin; // right shift 'n' by 1 $n >>= 1; } // required binary number return $bin; } // Driver Code $n = 38; echo decToBin($n); // This code is contributed // by mits ?> 

Output: 
 

100110


Time complexity: O(num), where num is the number of bits in the binary representation of n.
Auxiliary space: O(num), for using extra space for string bin.




 

METHOD 2:Using format()

APPROACH:

This code converts a decimal number to binary using the built-in format() function in Python. The function takes two arguments: the first is the number to be converted, and the second is the format specifier 'b', which tells the function to convert the number to binary.

ALGORITHM:

1. Take the decimal number as input.
2. Convert the decimal number to binary using the format() function with the format specifier 'b'.
3. Store the result in a variable.
4. Print the variable.

C++
// CPP code of the above approach #include <bits/stdc++.h> using namespace std; int main() {  int n = 38;  // Convert n to binary representation as a string  string binary = bitset<32>(n).to_string();  cout << "The binary representation of " << n  << " is: " << stoi(binary) << endl;  n = 10;  // Convert n to binary representation as a string  binary = bitset<32>(n).to_string();  cout << "The binary representation of " << n  << " is: " << stoi(binary) << endl;  return 0; } // This code is contributed by Susobhan Akhuli 
Java
// Java code of the above approach import java.util.Scanner; public class GFG {  public static void main(String[] args)  {  int n = 38;  // Convert n to binary representation as a string  String binary = Integer.toBinaryString(n);  System.out.println("The binary representation of "  + n + " is: " + binary);  n = 10;  // Convert n to binary representation as a string  binary = Integer.toBinaryString(n);  System.out.println("The binary representation of "  + n + " is: " + binary);  } } // This code is contributed by Susobhan Akhuli 
Python3
n = 38 binary = format(n, 'b') print(f"The binary representation of {n} is: {binary}") n = 10 binary = format(n, 'b') print(f"The binary representation of {n} is: {binary}") 
C#
// C# code of the above approach using System; public class GFG {  static void Main()  {  int n = 38;  // Convert n to binary representation as a string  string binary  = Convert.ToString(n, 2);  Console.WriteLine(  $"The binary representation of {n} is: {binary}");  n = 10;  // Convert n to binary representation as a string  binary = Convert.ToString(n, 2);  Console.WriteLine(  $"The binary representation of {n} is: {binary}");  } } // This code is contributed by Susobhan Akhuli 
JavaScript
// JavaScript program for the above approach function decimalToBinary(n) {  // Convert n to binary representation as a string  let binary = n.toString(2);  return binary; } // Test cases let n1 = 38; console.log(`The binary representation of ${n1} is: ${decimalToBinary(n1)}`); let n2 = 10; console.log(`The binary representation of ${n2} is: ${decimalToBinary(n2)}`); // This code is contributed by Susobhan Akhuli 

Output
The binary representation of 38 is: 100110 The binary representation of 10 is: 1010

Time complexity: O(log n), where n is the decimal number, because the number of iterations required in the format() function depends on the number of bits required to represent the number in binary, which is log2(n).

Space complexity: O(log n), because the space required to store the binary representation of the number in the variable also depends on the number of bits required to represent the number in binary, which is log2(n).


Next Article

Similar Reads

Practice Tags :