Depth-First Search (DFS) is a method used to explore all the nodes in a tree by going as deep as possible along each branch before moving to the next one. It starts at the root node and visits every node in the tree.
Depth-First Search (DFS) can be classified into three main types based on the order in which the nodes are visited:
- Pre-order Traversal: Visits the root node first, then recursively explores the left and right subtrees.
- In-order Traversal: Explores the left subtree first, then visits the root, and finally the right subtree.
- Post-order Traversal: Explores the left and right subtrees first, then visits the root node.
Different DFS Traversals of a Tree
1. Inorder Traversal
- Traverse the left subtree, i.e., call Inorder(left-subtree)
- Visit the root
- Traverse the right subtree, i.e., call Inorder(right-subtree)
C++ #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct Node { int data; struct Node *left, *right; Node(int data) { this->data = data; left = right = NULL; } }; /* Given a binary tree, print its nodes in inorder*/ void printInorder(struct Node* node) { if (node == NULL) return; /* first recur on left child */ printInorder(node->left); /* then print the data of node */ cout << node->data << " "; /* now recur on right child */ printInorder(node->right); } int main() { struct Node* root = new Node(1); root->left = new Node(2); root->right = new Node(3); root->left->left = new Node(4); root->left->right = new Node(5); root->right->right = new Node(6); printInorder(root); return 0; }
C #include <stdio.h> #include <stdlib.h> /* A binary tree node has data, pointer to left child and a pointer to right child */ struct node { int data; struct node* left; struct node* right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode(int data) { struct node* node = (struct node*)malloc(sizeof(struct node)); node->data = data; node->left = NULL; node->right = NULL; return (node); } /* Given a binary tree, print its nodes in inorder*/ void printInorder(struct node* node) { if (node == NULL) return; /* first recur on left child */ printInorder(node->left); /* then print the data of node */ printf("%d ", node->data); /* now recur on right child */ printInorder(node->right); } int main() { struct node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->right = newNode(6); printInorder(root); getchar(); return 0; }
Java class Node { int key; Node left, right; public Node(int item) { key = item; left = right = null; } } class GfG { // Root of Binary Tree Node root; BinaryTree() { root = null; } /* Given a binary tree, print its nodes in inorder*/ void printInorder(Node node) { if (node == null) return; /* first recur on left child */ printInorder(node.left); /* then print the data of node */ System.out.print(node.key + " "); /* now recur on right child */ printInorder(node.right); } // Wrappers over above recursive functions void printInorder() { printInorder(root); } public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.right = new Node(6); tree.printInorder(); } }
Python class Node: def __init__(self, key): self.left = None self.right = None self.val = key # A function to do inorder tree traversal def printInorder(root): if root: # First recur on left child printInorder(root.left) # then print the data of node print(root.val), # now recur on right child printInorder(root.right) root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.right = Node(6) printInorder(root)
C# using System; /* Class containing left and right child of current node and key value*/ class Node { public int key; public Node left, right; public Node(int item) { key = item; left = right = null; } } public class BinaryTree { // Root of Binary Tree Node root; BinaryTree() { root = null; } /* Given a binary tree, print its nodes in inorder*/ void printInorder(Node node) { if (node == null) return; /* first recur on left child */ printInorder(node.left); /* then print the data of node */ Console.Write(node.key + " "); /* now recur on right child */ printInorder(node.right); } // Wrappers over above recursive functions void printInorder() { printInorder(root); } public static void Main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.right = new Node(6); tree.printInorder(); } }
JavaScript class Node { constructor(val) { this.key = val; this.left = null; this.right = null; } } /* Given a binary tree, print its nodes in inorder */ function printInorder(node) { if (node == null) return; /* first recur on left child */ printInorder(node.left); /* then print the data of node */ process.stdout.write(node.key + " "); /* now recur on right child */ printInorder(node.right); } var root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.right = new Node(6); printInorder(root);
OutputInorder traversal of binary tree is 4 2 5 1 3
Time Complexity: O(N)
Auxiliary Space: O(log N)
Uses of Inorder Traversal
In the case of binary search trees (BST), Inorder traversal gives nodes in non-decreasing order. To get nodes of BST in non-increasing order, a variation of Inorder traversal where Inorder traversal is reversed can be used.
2. Preorder Traversal
- Visit the root
- Traverse the left subtree, i.e., call Preorder(left-subtree)
- Traverse the right subtree, i.e., call Preorder(right-subtree)
C++ #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct Node { int data; struct Node *left, *right; Node(int data) { this->data = data; left = right = NULL; } }; /* Given a binary tree, print its nodes in preorder*/ void printPreorder(struct Node* node) { if (node == NULL) return; /* first print data of node */ cout << node->data << " "; /* then recur on left subtree */ printPreorder(node->left); /* now recur on right subtree */ printPreorder(node->right); } int main() { struct Node* root = new Node(1); root->left = new Node(2); root->right = new Node(3); root->left->left = new Node(4); root->left->right = new Node(5); root->right->right = new Node(6); printPreorder(root); return 0; }
C #include <stdio.h> #include <stdlib.h> /* A binary tree node has data, pointer to left child and a pointer to right child */ struct node { int data; struct node* left; struct node* right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode(int data) { struct node* node = (struct node*)malloc(sizeof(struct node)); node->data = data; node->left = NULL; node->right = NULL; return (node); } /* Given a binary tree, print its nodes in preorder*/ void printPreorder(struct node* node) { if (node == NULL) return; /* first print data of node */ printf("%d ", node->data); /* then recur on left subtree */ printPreorder(node->left); /* now recur on right subtree */ printPreorder(node->right); } int main() { struct node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->right = newNode(6); printPreorder(root); getchar(); return 0; }
Java class Node { int key; Node left, right; public Node(int item) { key = item; left = right = null; } } class BinaryTree { // Root of Binary Tree Node root; BinaryTree() { root = null; } /* Given a binary tree, print its nodes in preorder*/ void printPreorder(Node node) { if (node == null) return; /* first print data of node */ System.out.print(node.key + " "); /* then recur on left subtree */ printPreorder(node.left); /* now recur on right subtree */ printPreorder(node.right); } // Wrappers over above recursive functions void printPreorder() { printPreorder(root); } // Driver code public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.left.right = new Node(6); tree.printPreorder(); } }
Python class Node: def __init__(self, key): self.left = None self.right = None self.val = key # A function to do preorder tree traversal def printPreorder(root): if root: # First print the data of node print(root.val), # Then recur on left child printPreorder(root.left) # Finally recur on right child printPreorder(root.right) root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.left.right = Node(6) printPreorder(root)
C# using System; /* Class containing left and right child of current node and key value*/ public class Node { public int key; public Node left, right; public Node(int item) { key = item; left = right = null; } } public class BinaryTree { // Root of Binary Tree Node root; BinaryTree() { root = null; } /* Given a binary tree, print its nodes in preorder*/ void printPreorder(Node node) { if (node == null) return; /* first print data of node */ Console.Write(node.key + " "); /* then recur on left subtree */ printPreorder(node.left); /* now recur on right subtree */ printPreorder(node.right); } // Wrappers over above recursive functions void printPreorder() { printPreorder(root); } public static void Main() { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.left.right = new Node(6); tree.printPreorder(); } }
JavaScript // A class that represents an individual node in a // Binary Tree class Node{ constructor(key){ this.left = null this.right = null this.val = key } } // A function to do preorder tree traversal function printPreorder(root){ if(root){ // First print the data of node process.stdout.write(root.val," ") // Then recur on left child printPreorder(root.left) // Finally recur on right child printPreorder(root.right) } } let root = new Node(1) root.left = new Node(2) root.right = new Node(3) root.left.left = new Node(4) root.left.right = new Node(5) printPreorder(root)
OutputPreorder traversal of binary tree is 1 2 4 5 3
Time Complexity: O(N)
Auxiliary Space: O(log N)
Uses of Preorder Traversal
Preorder traversal is used to create a copy of the tree. Preorder traversal is also used to get prefix expressions of an expression tree.
3. Postorder Traversal
- Traverse the left subtree, i.e., call Postorder(left-subtree)
- Traverse the right subtree, i.e., call Postorder(right-subtree)
- Visit the root
C++ // C program for different tree traversals #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct Node { int data; struct Node *left, *right; Node(int data) { this->data = data; left = right = NULL; } }; /* Given a binary tree, print its nodes according to the "bottom-up" postorder traversal. */ void printPostorder(struct Node* node) { if (node == NULL) return; // first recur on left subtree printPostorder(node->left); // then recur on right subtree printPostorder(node->right); // now deal with the node cout << node->data << " "; } int main() { struct Node* root = new Node(1); root->left = new Node(2); root->right = new Node(3); root->left->left = new Node(4); root->left->right = new Node(5); root->right->right = new Node(6); printPostorder(root); return 0; }
C #include <stdio.h> #include <stdlib.h> /* A binary tree node has data, pointer to left child and a pointer to right child */ struct node { int data; struct node* left; struct node* right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode(int data) { struct node* node = (struct node*)malloc(sizeof(struct node)); node->data = data; node->left = NULL; node->right = NULL; return (node); } /* Given a binary tree, print its nodes according to the "bottom-up" postorder traversal. */ void printPostorder(struct node* node) { if (node == NULL) return; // first recur on left subtree printPostorder(node->left); // then recur on right subtree printPostorder(node->right); // now deal with the node printf("%d ", node->data); } int main() { struct node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->right = newNode(6); printPostorder(root); getchar(); return 0; }
Java // Java program for different tree traversals /* Class containing left and right child of current node and key value*/ class Node { int key; Node left, right; public Node(int item) { key = item; left = right = null; } } class BinaryTree { // Root of Binary Tree Node root; BinaryTree() { root = null; } /* Given a binary tree, print its nodes according to the "bottom-up" postorder traversal. */ void printPostorder(Node node) { if (node == null) return; // first recur on left subtree printPostorder(node.left); // then recur on right subtree printPostorder(node.right); // now deal with the node System.out.print(node.key + " "); } // Wrappers over above recursive functions void printPostorder() { printPostorder(root); } public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.right = new Node(6); tree.printPostorder(); } }
Python # Python3 program to for tree traversals # A class that represents an individual node in a # Binary Tree class Node: def __init__(self, key): self.left = None self.right = None self.val = key # A function to do postorder tree traversal def printPostorder(root): if root: # First recur on left child printPostorder(root.left) # the recur on right child printPostorder(root.right) # now print the data of node print(root.val), root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.right = Node(6) printPostorder(root)
C# // C# program for different tree traversals using System; /* Class containing left and right child of current node and key value*/ public class Node { public int key; public Node left, right; public Node(int item) { key = item; left = right = null; } } public class BinaryTree { // Root of Binary Tree Node root; BinaryTree() { root = null; } /* Given a binary tree, print its nodes according to the "bottom-up" postorder traversal. */ void printPostorder(Node node) { if (node == null) return; // first recur on left subtree printPostorder(node.left); // then recur on right subtree printPostorder(node.right); // now deal with the node Console.Write(node.key + " "); } // Wrappers over above recursive functions void printPostorder() { printPostorder(root); } public static void Main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.right = new Node(6); tree.printPostorder(); } }
JavaScript /* Class containing left and right child of current node and key value*/ class Node { constructor(item) { this.key = item; this.left = this.right = null; } } var root; /* * Given a binary tree, print its nodes according to the "bottom-up" postorder * traversal. */ function printPostorder(node) { if (node == null) return; // first recur on left subtree printPostorder(node.left); // then recur on right subtree printPostorder(node.right); // now deal with the node process.stdout.write(node.key + " "); } root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.right = new Node(6); printPostorder(root);
OutputPostorder traversal of binary tree is 4 5 2 3 1
Time Complexity: O(N)
Auxiliary Space: O(log N)
Uses of Postorder Traversal:
Postorder traversal is used to delete every node of the tree. Postorder traversal is also useful to get the postfix expression of an expression tree
Related Article : Breadth First Traversal.
Similar Reads
Introduction to Recursion The process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
What is Recursion? Recursion is defined as a process which calls itself directly or indirectly and the corresponding function is called a recursive function.Example 1 : Sum of Natural Numbers Let us consider a problem to find the sum of natural numbers, there are several ways of doing that but the simplest approach is
8 min read
Difference between Recursion and Iteration A program is called recursive when an entity calls itself. A program is called iterative when there is a loop (or repetition).Example: Program to find the factorial of a number C++ // C++ program to find factorial of given number #include<bits/stdc++.h> using namespace std; // ----- Recursion
6 min read
Types of Recursions What is Recursion? The process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. Using recursive algorithm, certain problems can be solved quite easily. Examples of such problems are Towers of Hanoi (TOH), Inord
15+ min read
Finite and Infinite Recursion with examples The process in which a function calls itself directly or indirectly is called Recursion and the corresponding function is called a Recursive function. Using Recursion, certain problems can be solved quite easily. Examples of such problems are Towers of Hanoi (TOH), Inorder/Preorder/Postorder Tree Tr
6 min read
What is Tail Recursion Tail recursion is defined as a recursive function in which the recursive call is the last statement that is executed by the function. So basically nothing is left to execute after the recursion call.For example the following function print() is tail recursive.C++// An example of tail recursive funct
7 min read
What is Implicit recursion? What is Recursion? Recursion is a programming approach where a function repeats an action by calling itself, either directly or indirectly. This enables the function to continue performing the action until a particular condition is satisfied, such as when a particular value is reached or another con
5 min read
Why is Tail Recursion optimization faster than normal Recursion? Tail recursion is defined as a recursive function in which the recursive call is the last statement that is executed by the function. So basically nothing is left to execute after the recursion call.Why is tail recursion optimization faster than normal recursion?In non-tail recursive functions, afte
4 min read
Recursive Functions A Recursive function can be defined as a routine that calls itself directly or indirectly. In other words, a recursive function is a function that solves a problem by solving smaller instances of the same problem. This technique is commonly used in programming to solve problems that can be broken do
4 min read
Difference Between Recursion and Induction Recursion and induction are fundamental ideas in computer science and mathematics that might be regularly used to solve problems regarding repetitive structures. Recursion is a programming technique in which a function calls itself to solve the problem, whilst induction is a mathematical proof techn
4 min read