Open In App

Count and Toggle Queries on a Binary Array

Last Updated : 27 Apr, 2023
Suggest changes
Share
Like Article
Like
Report

Given a size n in which initially all elements are 0. The task is to perform multiple queries of following two types. The queries can appear in any order. 
 

1. toggle(start, end) : Toggle (0 into 1 or 1 into 0) the values from range 'start' to 'end'.

2. count(start, end) : Count the number of 1's within given range from 'start' to 'end'.

Input : n = 5 // we have n = 5 blocks toggle 1 2 // change 1 into 0 or 0 into 1 Toggle 2 4 Count 2 3 // count all 1's within the range Toggle 2 4 Count 1 4 // count all 1's within the range Output : Total number of 1's in range 2 to 3 is = 1 Total number of 1's in range 1 to 4 is = 2


 


A simple solutionfor this problem is to traverse the complete range for "Toggle" query and when you get "Count" query then count all the 1's for given range. But the time complexity for this approach will be O(q*n) where q=total number of queries.
An efficient solution for this problem is to use Segment Tree with Lazy Propagation. Here we collect the updates until we get a query for "Count". When we get the query for "Count", we make all the previously collected Toggle updates in array and then count number of 1's with in the given range. 
Below is the implementation of above approach:
 

C++
// C++ program to implement toggle and count // queries on a binary array. #include<bits/stdc++.h> using namespace std; const int MAX = 100000; // segment tree to store count of 1's within range int tree[MAX] = {0}; // bool type tree to collect the updates for toggling // the values of 1 and 0 in given range bool lazy[MAX] = {false}; // function for collecting updates of toggling // node --> index of current node in segment tree // st --> starting index of current node // en --> ending index of current node // us --> starting index of range update query // ue --> ending index of range update query void toggle(int node, int st, int en, int us, int ue) {  // If lazy value is non-zero for current node of segment  // tree, then there are some pending updates. So we need  // to make sure that the pending updates are done before  // making new updates. Because this value may be used by  // parent after recursive calls (See last line of this  // function)  if (lazy[node])  {  // Make pending updates using value stored in lazy nodes  lazy[node] = false;  tree[node] = en - st + 1 - tree[node];  // checking if it is not leaf node because if  // it is leaf node then we cannot go further  if (st < en)  {  // We can postpone updating children we don't  // need their new values now.  // Since we are not yet updating children of 'node',  // we need to set lazy flags for the children  lazy[node<<1] = !lazy[node<<1];  lazy[1+(node<<1)] = !lazy[1+(node<<1)];  }  }  // out of range  if (st>en || us > en || ue < st)  return ;  // Current segment is fully in range  if (us<=st && en<=ue)  {  // Add the difference to current node  tree[node] = en-st+1 - tree[node];  // same logic for checking leaf node or not  if (st < en)  {  // This is where we store values in lazy nodes,  // rather than updating the segment tree itself  // Since we don't need these updated values now  // we postpone updates by storing values in lazy[]  lazy[node<<1] = !lazy[node<<1];  lazy[1+(node<<1)] = !lazy[1+(node<<1)];  }  return;  }  // If not completely in range, but overlaps, recur for  // children,  int mid = (st+en)/2;  toggle((node<<1), st, mid, us, ue);  toggle((node<<1)+1, mid+1,en, us, ue);  // And use the result of children calls to update this node  if (st < en)  tree[node] = tree[node<<1] + tree[(node<<1)+1]; } /* node --> Index of current node in the segment tree.  Initially 0 is passed as root is always at'  index 0  st & en --> Starting and ending indexes of the  segment represented by current node,  i.e., tree[node]  qs & qe --> Starting and ending indexes of query  range */ // function to count number of 1's within given range int countQuery(int node, int st, int en, int qs, int qe) {  // current node is out of range  if (st>en || qs > en || qe < st)  return 0;  // If lazy flag is set for current node of segment tree,  // then there are some pending updates. So we need to  // make sure that the pending updates are done before  // processing the sub sum query  if (lazy[node])  {  // Make pending updates to this node. Note that this  // node represents sum of elements in arr[st..en] and  // all these elements must be increased by lazy[node]  lazy[node] = false;  tree[node] = en-st+1-tree[node];  // checking if it is not leaf node because if  // it is leaf node then we cannot go further  if (st<en)  {  // Since we are not yet updating children os si,  // we need to set lazy values for the children  lazy[node<<1] = !lazy[node<<1];  lazy[(node<<1)+1] = !lazy[(node<<1)+1];  }  }  // At this point we are sure that pending lazy updates  // are done for current node. So we can return value  // If this segment lies in range  if (qs<=st && en<=qe)  return tree[node];  // If a part of this segment overlaps with the given range  int mid = (st+en)/2;  return countQuery((node<<1), st, mid, qs, qe) +  countQuery((node<<1)+1, mid+1, en, qs, qe); } // Driver program to run the case int main() {  int n = 5;  toggle(1, 0, n-1, 1, 2); // Toggle 1 2  toggle(1, 0, n-1, 2, 4); // Toggle 2 4  cout << countQuery(1, 0, n-1, 2, 3) << endl; // Count 2 3  toggle(1, 0, n-1, 2, 4); // Toggle 2 4  cout << countQuery(1, 0, n-1, 1, 4) << endl; // Count 1 4  return 0; } 
Java
// Java program to implement toggle and  // count queries on a binary array.  class GFG { static final int MAX = 100000; // segment tree to store count // of 1's within range  static int tree[] = new int[MAX]; // bool type tree to collect the updates  // for toggling the values of 1 and 0 in // given range  static boolean lazy[] = new boolean[MAX]; // function for collecting updates of toggling  // node --> index of current node in segment tree  // st --> starting index of current node  // en --> ending index of current node  // us --> starting index of range update query  // ue --> ending index of range update query  static void toggle(int node, int st,   int en, int us, int ue)  {  // If lazy value is non-zero for current   // node of segment tree, then there are   // some pending updates. So we need   // to make sure that the pending updates   // are done before making new updates.  // Because this value may be used by   // parent after recursive calls (See last   // line of this function)   if (lazy[node])  {    // Make pending updates using value   // stored in lazy nodes   lazy[node] = false;  tree[node] = en - st + 1 - tree[node];  // checking if it is not leaf node  // because if it is leaf node then  // we cannot go further   if (st < en)  {  // We can postpone updating children   // we don't need their new values now.   // Since we are not yet updating children  // of 'node', we need to set lazy flags   // for the children   lazy[node << 1] = !lazy[node << 1];  lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];  }  }  // out of range   if (st > en || us > en || ue < st)   {  return;  }  // Current segment is fully in range   if (us <= st && en <= ue)  {  // Add the difference to current node   tree[node] = en - st + 1 - tree[node];  // same logic for checking leaf node or not   if (st < en)  {  // This is where we store values in lazy nodes,   // rather than updating the segment tree itself   // Since we don't need these updated values now   // we postpone updates by storing values in lazy[]   lazy[node << 1] = !lazy[node << 1];  lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];  }  return;  }  // If not completely in rang,   // but overlaps, recur for children,   int mid = (st + en) / 2;  toggle((node << 1), st, mid, us, ue);  toggle((node << 1) + 1, mid + 1, en, us, ue);  // And use the result of children   // calls to update this node   if (st < en)   {  tree[node] = tree[node << 1] +  tree[(node << 1) + 1];  } } /* node --> Index of current node in the segment tree.   Initially 0 is passed as root is always at'   index 0  st & en --> Starting and ending indexes of the   segment represented by current node,   i.e., tree[node]  qs & qe --> Starting and ending indexes of query   range */ // function to count number of 1's  // within given range  static int countQuery(int node, int st,   int en, int qs, int qe) {  // current node is out of range   if (st > en || qs > en || qe < st)  {  return 0;  }  // If lazy flag is set for current   // node of segment tree, then there   // are some pending updates. So we   // need to make sure that the pending   // updates are done before processing   // the sub sum query   if (lazy[node])  {  // Make pending updates to this node.   // Note that this node represents sum   // of elements in arr[st..en] and   // all these elements must be increased  // by lazy[node]   lazy[node] = false;  tree[node] = en - st + 1 - tree[node];  // checking if it is not leaf node because if   // it is leaf node then we cannot go further   if (st < en)   {  // Since we are not yet updating children os si,   // we need to set lazy values for the children   lazy[node << 1] = !lazy[node << 1];  lazy[(node << 1) + 1] = !lazy[(node << 1) + 1];  }  }  // At this point we are sure that pending   // lazy updates are done for current node.   // So we can return value If this segment   // lies in range   if (qs <= st && en <= qe)  {  return tree[node];  }  // If a part of this segment overlaps  // with the given range   int mid = (st + en) / 2;  return countQuery((node << 1), st, mid, qs, qe) +   countQuery((node << 1) + 1, mid + 1, en, qs, qe); } // Driver Code public static void main(String args[]) {  int n = 5;  toggle(1, 0, n - 1, 1, 2); // Toggle 1 2   toggle(1, 0, n - 1, 2, 4); // Toggle 2 4   System.out.println(countQuery(1, 0, n - 1, 2, 3)); // Count 2 3   toggle(1, 0, n - 1, 2, 4); // Toggle 2 4   System.out.println(countQuery(1, 0, n - 1, 1, 4)); // Count 1 4  } } // This code is contributed by 29AjayKumar 
Python3
# Python program to implement toggle and count # queries on a binary array. MAX = 100000 # segment tree to store count of 1's within range tree = [0] * MAX # bool type tree to collect the updates for toggling # the values of 1 and 0 in given range lazy = [False] * MAX # function for collecting updates of toggling # node --> index of current node in segment tree # st --> starting index of current node # en --> ending index of current node # us --> starting index of range update query # ue --> ending index of range update query def toggle(node: int, st: int, en: int, us: int, ue: int): # If lazy value is non-zero for current node of segment # tree, then there are some pending updates. So we need # to make sure that the pending updates are done before # making new updates. Because this value may be used by # parent after recursive calls (See last line of this # function) if lazy[node]: # Make pending updates using value stored in lazy nodes lazy[node] = False tree[node] = en - st + 1 - tree[node] # checking if it is not leaf node because if # it is leaf node then we cannot go further if st < en: # We can postpone updating children we don't # need their new values now. # Since we are not yet updating children of 'node', # we need to set lazy flags for the children lazy[node << 1] = not lazy[node << 1] lazy[1 + (node << 1)] = not lazy[1 + (node << 1)] # out of range if st > en or us > en or ue < st: return # Current segment is fully in range if us <= st and en <= ue: # Add the difference to current node tree[node] = en - st + 1 - tree[node] # same logic for checking leaf node or not if st < en: # This is where we store values in lazy nodes, # rather than updating the segment tree itself # Since we don't need these updated values now # we postpone updates by storing values in lazy[] lazy[node << 1] = not lazy[node << 1] lazy[1 + (node << 1)] = not lazy[1 + (node << 1)] return # If not completely in rang, but overlaps, recur for # children, mid = (st + en) // 2 toggle((node << 1), st, mid, us, ue) toggle((node << 1) + 1, mid + 1, en, us, ue) # And use the result of children calls to update this node if st < en: tree[node] = tree[node << 1] + tree[(node << 1) + 1] # node --> Index of current node in the segment tree. # Initially 0 is passed as root is always at' # index 0 # st & en --> Starting and ending indexes of the # segment represented by current node, # i.e., tree[node] # qs & qe --> Starting and ending indexes of query # range # function to count number of 1's within given range def countQuery(node: int, st: int, en: int, qs: int, qe: int) -> int: # current node is out of range if st > en or qs > en or qe < st: return 0 # If lazy flag is set for current node of segment tree, # then there are some pending updates. So we need to # make sure that the pending updates are done before # processing the sub sum query if lazy[node]: # Make pending updates to this node. Note that this # node represents sum of elements in arr[st..en] and # all these elements must be increased by lazy[node] lazy[node] = False tree[node] = en - st + 1 - tree[node] # checking if it is not leaf node because if # it is leaf node then we cannot go further if st < en: # Since we are not yet updating children os si, # we need to set lazy values for the children lazy[node << 1] = not lazy[node << 1] lazy[(node << 1) + 1] = not lazy[(node << 1) + 1] # At this point we are sure that pending lazy updates # are done for current node. So we can return value # If this segment lies in range if qs <= st and en <= qe: return tree[node] # If a part of this segment overlaps with the given range mid = (st + en) // 2 return countQuery((node << 1), st, mid, qs, qe) + countQuery( (node << 1) + 1, mid + 1, en, qs, qe) # Driver Code if __name__ == "__main__": n = 5 toggle(1, 0, n - 1, 1, 2) # Toggle 1 2 toggle(1, 0, n - 1, 2, 4) # Toggle 2 4 print(countQuery(1, 0, n - 1, 2, 3)) # count 2 3 toggle(1, 0, n - 1, 2, 4) # Toggle 2 4 print(countQuery(1, 0, n - 1, 1, 4)) # count 1 4 # This code is contributed by # sanjeev2552 
C#
// C# program to implement toggle and  // count queries on a binary array. using System; public class GFG{  static readonly int MAX = 100000;   // segment tree to store count   // of 1's within range   static int []tree = new int[MAX];   // bool type tree to collect the updates   // for toggling the values of 1 and 0 in   // given range   static bool []lazy = new bool[MAX];   // function for collecting updates of toggling   // node --> index of current node in segment tree   // st --> starting index of current node   // en --> ending index of current node   // us --> starting index of range update query   // ue --> ending index of range update query   static void toggle(int node, int st,   int en, int us, int ue)   {   // If lazy value is non-zero for current   // node of segment tree, then there are   // some pending updates. So we need   // to make sure that the pending updates   // are done before making new updates.   // Because this value may be used by   // parent after recursive calls (See last   // line of this function)   if (lazy[node])   {   // Make pending updates using value   // stored in lazy nodes   lazy[node] = false;   tree[node] = en - st + 1 - tree[node];   // checking if it is not leaf node   // because if it is leaf node then   // we cannot go further   if (st < en)   {   // We can postpone updating children   // we don't need their new values now.   // Since we are not yet updating children   // of 'node', we need to set lazy flags   // for the children   lazy[node << 1] = !lazy[node << 1];   lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];   }   }   // out of range   if (st > en || us > en || ue < st)   {   return;   }   // Current segment is fully in range   if (us <= st && en <= ue)   {   // Add the difference to current node   tree[node] = en - st + 1 - tree[node];   // same logic for checking leaf node or not   if (st < en)   {   // This is where we store values in lazy nodes,   // rather than updating the segment tree itself   // Since we don't need these updated values now   // we postpone updates by storing values in lazy[]   lazy[node << 1] = !lazy[node << 1];   lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];   }   return;   }   // If not completely in rang,   // but overlaps, recur for children,   int mid = (st + en) / 2;   toggle((node << 1), st, mid, us, ue);   toggle((node << 1) + 1, mid + 1, en, us, ue);   // And use the result of children   // calls to update this node   if (st < en)   {   tree[node] = tree[node << 1] +   tree[(node << 1) + 1];   }   }   /* node --> Index of current node in the segment tree.   Initially 0 is passed as root is always at'   index 0   st & en --> Starting and ending indexes of the   segment represented by current node,   i.e., tree[node]   qs & qe --> Starting and ending indexes of query   range */  // function to count number of 1's   // within given range   static int countQuery(int node, int st,   int en, int qs, int qe)   {   // current node is out of range   if (st > en || qs > en || qe < st)   {   return 0;   }   // If lazy flag is set for current   // node of segment tree, then there   // are some pending updates. So we   // need to make sure that the pending   // updates are done before processing   // the sub sum query   if (lazy[node])   {   // Make pending updates to this node.   // Note that this node represents sum   // of elements in arr[st..en] and   // all these elements must be increased   // by lazy[node]   lazy[node] = false;   tree[node] = en - st + 1 - tree[node];   // checking if it is not leaf node because if   // it is leaf node then we cannot go further   if (st < en)   {   // Since we are not yet updating children os si,   // we need to set lazy values for the children   lazy[node << 1] = !lazy[node << 1];   lazy[(node << 1) + 1] = !lazy[(node << 1) + 1];   }   }   // At this point we are sure that pending   // lazy updates are done for current node.   // So we can return value If this segment   // lies in range   if (qs <= st && en <= qe)   {   return tree[node];   }   // If a part of this segment overlaps   // with the given range   int mid = (st + en) / 2;   return countQuery((node << 1), st, mid, qs, qe) +   countQuery((node << 1) + 1, mid + 1, en, qs, qe);   }   // Driver Code   public static void Main()   {   int n = 5;   toggle(1, 0, n - 1, 1, 2); // Toggle 1 2   toggle(1, 0, n - 1, 2, 4); // Toggle 2 4   Console.WriteLine(countQuery(1, 0, n - 1, 2, 3)); // Count 2 3   toggle(1, 0, n - 1, 2, 4); // Toggle 2 4   Console.WriteLine(countQuery(1, 0, n - 1, 1, 4)); // Count 1 4   }  }  /*This code is contributed by PrinciRaj1992*/ 
JavaScript
<script> // JavaScript program to implement toggle and  // count queries on a binary array.  let MAX = 100000; // segment tree to store count // of 1's within range  let tree=new Array(MAX); // bool type tree to collect the updates  // for toggling the values of 1 and 0 in // given range  let lazy = new Array(MAX); for(let i=0;i<MAX;i++) {  tree[i]=0;  lazy[i]=false; } // function for collecting updates of toggling  // node --> index of current node in segment tree  // st --> starting index of current node  // en --> ending index of current node  // us --> starting index of range update query  // ue --> ending index of range update query  function toggle(node,st,en,us,ue) {  // If lazy value is non-zero for current   // node of segment tree, then there are   // some pending updates. So we need   // to make sure that the pending updates   // are done before making new updates.  // Because this value may be used by   // parent after recursive calls (See last   // line of this function)   if (lazy[node])  {    // Make pending updates using value   // stored in lazy nodes   lazy[node] = false;  tree[node] = en - st + 1 - tree[node];    // checking if it is not leaf node  // because if it is leaf node then  // we cannot go further   if (st < en)  {  // We can postpone updating children   // we don't need their new values now.   // Since we are not yet updating children  // of 'node', we need to set lazy flags   // for the children   lazy[node << 1] = !lazy[node << 1];  lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];  }  }    // out of range   if (st > en || us > en || ue < st)   {  return;  }    // Current segment is fully in range   if (us <= st && en <= ue)  {  // Add the difference to current node   tree[node] = en - st + 1 - tree[node];    // same logic for checking leaf node or not   if (st < en)  {  // This is where we store values in lazy nodes,   // rather than updating the segment tree itself   // Since we don't need these updated values now   // we postpone updates by storing values in lazy[]   lazy[node << 1] = !lazy[node << 1];  lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];  }  return;  }    // If not completely in rang,   // but overlaps, recur for children,   let mid = Math.floor((st + en) / 2);  toggle((node << 1), st, mid, us, ue);  toggle((node << 1) + 1, mid + 1, en, us, ue);    // And use the result of children   // calls to update this node   if (st < en)   {  tree[node] = tree[node << 1] +  tree[(node << 1) + 1];  } } /* node --> Index of current node in the segment tree.   Initially 0 is passed as root is always at'   index 0  st & en --> Starting and ending indexes of the   segment represented by current node,   i.e., tree[node]  qs & qe --> Starting and ending indexes of query   range */ // function to count number of 1's  // within given range  function countQuery(node,st,en,qs,qe) {  // current node is out of range   if (st > en || qs > en || qe < st)  {  return 0;  }    // If lazy flag is set for current   // node of segment tree, then there   // are some pending updates. So we   // need to make sure that the pending   // updates are done before processing   // the sub sum query   if (lazy[node])  {  // Make pending updates to this node.   // Note that this node represents sum   // of elements in arr[st..en] and   // all these elements must be increased  // by lazy[node]   lazy[node] = false;  tree[node] = en - st + 1 - tree[node];    // checking if it is not leaf node because if   // it is leaf node then we cannot go further   if (st < en)   {  // Since we are not yet updating children os si,   // we need to set lazy values for the children   lazy[node << 1] = !lazy[node << 1];  lazy[(node << 1) + 1] = !lazy[(node << 1) + 1];  }  }    // At this point we are sure that pending   // lazy updates are done for current node.   // So we can return value If this segment   // lies in range   if (qs <= st && en <= qe)  {  return tree[node];  }    // If a part of this segment overlaps  // with the given range   let mid = Math.floor((st + en) / 2);  return countQuery((node << 1), st, mid, qs, qe) +   countQuery((node << 1) + 1, mid + 1, en, qs, qe); } // Driver Code let n = 5; toggle(1, 0, n - 1, 1, 2); // Toggle 1 2  toggle(1, 0, n - 1, 2, 4); // Toggle 2 4  document.write(countQuery(1, 0, n - 1, 2, 3)+"<br>"); // Count 2 3  toggle(1, 0, n - 1, 2, 4); // Toggle 2 4  document.write(countQuery(1, 0, n - 1, 1, 4)+"<br>"); // Count 1 4  // This code is contributed by rag2127 </script> 

Output:  

1 2

The time complexity of the given program is O(log n) for both toggle() and countQuery() functions.

The space complexity of the program is O(n).
 


Next Article

Similar Reads