# Python program to illustrate ElGamal encryption import random from math import pow a = random.randint(2, 10) def gcd(a, b): if a < b: return gcd(b, a) elif a % b == 0: return b; else: return gcd(b, a % b) # Generating large random numbers def gen_key(q): key = random.randint(pow(10, 20), q) while gcd(q, key) != 1: key = random.randint(pow(10, 20), q) return key # Modular exponentiation def power(a, b, c): x = 1 y = a while b > 0: if b % 2 != 0: x = (x * y) % c; y = (y * y) % c b = int(b / 2) return x % c # Asymmetric encryption def encrypt(msg, q, h, g): en_msg = [] k = gen_key(q)# Private key for sender s = power(h, k, q) p = power(g, k, q) for i in range(0, len(msg)): en_msg.append(msg[i]) print("g^k used : ", p) print("g^ak used : ", s) for i in range(0, len(en_msg)): en_msg[i] = s * ord(en_msg[i]) return en_msg, p def decrypt(en_msg, p, key, q): dr_msg = [] h = power(p, key, q) for i in range(0, len(en_msg)): dr_msg.append(chr(int(en_msg[i]/h))) return dr_msg # Driver code def main(): msg = 'encryption' print("Original Message :", msg) q = random.randint(pow(10, 20), pow(10, 50)) g = random.randint(2, q) key = gen_key(q)# Private key for receiver h = power(g, key, q) print("g used : ", g) print("g^a used : ", h) en_msg, p = encrypt(msg, q, h, g) dr_msg = decrypt(en_msg, p, key, q) dmsg = ''.join(dr_msg) print("Decrypted Message :", dmsg); if __name__ == '__main__': main()