Open In App

Implementation of Chinese Remainder theorem (Inverse Modulo based implementation)

Last Updated : 28 Nov, 2022
Suggest changes
Share
Like Article
Like
Report

We are given two arrays num[0..k-1] and rem[0..k-1]. In num[0..k-1], every pair is coprime (gcd for every pair is 1). We need to find minimum positive number x such that: 

 x % num[0] = rem[0], x % num[1] = rem[1], ....................... x % num[k-1] = rem[k-1]

Example: 

Input: num[] = {3, 4, 5}, rem[] = {2, 3, 1} Output: 11 Explanation: 11 is the smallest number such that: (1) When we divide it by 3, we get remainder 2. (2) When we divide it by 4, we get remainder 3. (3) When we divide it by 5, we get remainder 1.

We strongly recommend to refer below post as a prerequisite for this.

Chinese Remainder Theorem | Set 1 (Introduction)
We have discussed a Naive solution to find minimum x. In this article, an efficient solution to find x is discussed.
The solution is based on below formula.

x = ( ? (rem[i]*pp[i]*inv[i]) ) % prod Where 0 <= i <= n-1 rem[i] is given array of remainders prod is product of all given numbers prod = num[0] * num[1] * ... * num[k-1] pp[i] is product of all divided by num[i] pp[i] = prod / num[i] inv[i] = Modular Multiplicative Inverse of pp[i] with respect to num[i]

Example: 

Let us take below example to understand the solution num[] = {3, 4, 5}, rem[] = {2, 3, 1} prod = 60 pp[] = {20, 15, 12} inv[] = {2, 3, 3} // (20*2)%3 = 1, (15*3)%4 = 1 // (12*3)%5 = 1 x = (rem[0]*pp[0]*inv[0] + rem[1]*pp[1]*inv[1] + rem[2]*pp[2]*inv[2]) % prod = (2*20*2 + 3*15*3 + 1*12*3) % 60 = (80 + 135 + 36) % 60 = 11

Refer this for nice visual explanation of above formula.

Below is the implementation of above formula. We can use Extended Euclid based method discussed here to find inverse modulo. 

C++
// A C++ program to demonstrate  // working of Chinese remainder // Theorem #include <bits/stdc++.h> using namespace std; // Returns modulo inverse of a  // with respect to m using // extended Euclid Algorithm.  // Refer below post for details: // https://www.geeksforgeeks.org/ // multiplicative-inverse-under-modulo-m/ int inv(int a, int m) {  int m0 = m, t, q;  int x0 = 0, x1 = 1;  if (m == 1)  return 0;  // Apply extended Euclid Algorithm  while (a > 1) {  // q is quotient  q = a / m;  t = m;  // m is remainder now, process same as  // euclid's algo  m = a % m, a = t;  t = x0;  x0 = x1 - q * x0;  x1 = t;  }  // Make x1 positive  if (x1 < 0)  x1 += m0;  return x1; } // k is size of num[] and rem[]. Returns the smallest // number x such that: // x % num[0] = rem[0], // x % num[1] = rem[1], // .................. // x % num[k-2] = rem[k-1] // Assumption: Numbers in num[] are pairwise coprime // (gcd for every pair is 1) int findMinX(int num[], int rem[], int k) {  // Compute product of all numbers  int prod = 1;  for (int i = 0; i < k; i++)  prod *= num[i];  // Initialize result  int result = 0;  // Apply above formula  for (int i = 0; i < k; i++) {  int pp = prod / num[i];  result += rem[i] * inv(pp, num[i]) * pp;  }  return result % prod; } // Driver method int main(void) {  int num[] = { 3, 4, 5 };  int rem[] = { 2, 3, 1 };  int k = sizeof(num) / sizeof(num[0]);  cout << "x is " << findMinX(num, rem, k);  return 0; } 
Java
// A Java program to demonstrate // working of Chinese remainder // Theorem import java.io.*; class GFG {  // Returns modulo inverse of a  // with respect to m using extended  // Euclid Algorithm. Refer below post for details:  // https://www.geeksforgeeks.org/  // multiplicative-inverse-under-modulo-m/  static int inv(int a, int m)  {  int m0 = m, t, q;  int x0 = 0, x1 = 1;  if (m == 1)  return 0;  // Apply extended Euclid Algorithm  while (a > 1) {  // q is quotient  q = a / m;  t = m;  // m is remainder now, process  // same as euclid's algo  m = a % m;  a = t;  t = x0;  x0 = x1 - q * x0;  x1 = t;  }  // Make x1 positive  if (x1 < 0)  x1 += m0;  return x1;  }  // k is size of num[] and rem[].  // Returns the smallest number  // x such that:  // x % num[0] = rem[0],  // x % num[1] = rem[1],  // ..................  // x % num[k-2] = rem[k-1]  // Assumption: Numbers in num[] are pairwise  // coprime (gcd for every pair is 1)  static int findMinX(int num[], int rem[], int k)  {  // Compute product of all numbers  int prod = 1;  for (int i = 0; i < k; i++)  prod *= num[i];  // Initialize result  int result = 0;  // Apply above formula  for (int i = 0; i < k; i++) {  int pp = prod / num[i];  result += rem[i] * inv(pp, num[i]) * pp;  }  return result % prod;  }  // Driver method  public static void main(String args[])  {  int num[] = { 3, 4, 5 };  int rem[] = { 2, 3, 1 };  int k = num.length;  System.out.println("x is " + findMinX(num, rem, k));  } } // This code is contributed by nikita Tiwari. 
Python3
# A Python3 program to demonstrate  # working of Chinese remainder  # Theorem  # Returns modulo inverse of a with  # respect to m using extended  # Euclid Algorithm. Refer below  # post for details:  # https://www.geeksforgeeks.org/ # multiplicative-inverse-under-modulo-m/  def inv(a, m) : m0 = m x0 = 0 x1 = 1 if (m == 1) : return 0 # Apply extended Euclid Algorithm  while (a > 1) : # q is quotient  q = a // m t = m # m is remainder now, process  # same as euclid's algo  m = a % m a = t t = x0 x0 = x1 - q * x0 x1 = t # Make x1 positive  if (x1 < 0) : x1 = x1 + m0 return x1 # k is size of num[] and rem[].  # Returns the smallest  # number x such that:  # x % num[0] = rem[0],  # x % num[1] = rem[1],  # ..................  # x % num[k-2] = rem[k-1]  # Assumption: Numbers in num[]  # are pairwise coprime  # (gcd for every pair is 1)  def findMinX(num, rem, k) : # Compute product of all numbers  prod = 1 for i in range(0, k) : prod = prod * num[i] # Initialize result  result = 0 # Apply above formula  for i in range(0,k): pp = prod // num[i] result = result + rem[i] * inv(pp, num[i]) * pp return result % prod # Driver method  num = [3, 4, 5] rem = [2, 3, 1] k = len(num) print( "x is " , findMinX(num, rem, k)) # This code is contributed by Nikita Tiwari.  
C#
// A C# program to demonstrate  // working of Chinese remainder  // Theorem  using System;  class GFG  {   // Returns modulo inverse of   // 'a' with respect to 'm'   // using extended Euclid Algorithm.   // Refer below post for details:   // https://www.geeksforgeeks.org/  // multiplicative-inverse-under-modulo-m/   static int inv(int a, int m)   {   int m0 = m, t, q;   int x0 = 0, x1 = 1;     if (m == 1)   return 0;     // Apply extended   // Euclid Algorithm   while (a > 1)   {   // q is quotient   q = a / m;     t = m;     // m is remainder now,   // process same as   // euclid's algo   m = a % m; a = t;     t = x0;     x0 = x1 - q * x0;     x1 = t;   }     // Make x1 positive   if (x1 < 0)   x1 += m0;     return x1;   }     // k is size of num[] and rem[].   // Returns the smallest number   // x such that:   // x % num[0] = rem[0],   // x % num[1] = rem[1],   // ..................   // x % num[k-2] = rem[k-1]   // Assumption: Numbers in num[]   // are pairwise coprime (gcd   // for every pair is 1)   static int findMinX(int []num,   int []rem,   int k)   {   // Compute product   // of all numbers   int prod = 1;   for (int i = 0; i < k; i++)   prod *= num[i];     // Initialize result   int result = 0;     // Apply above formula   for (int i = 0; i < k; i++)   {   int pp = prod / num[i];   result += rem[i] *   inv(pp, num[i]) * pp;   }     return result % prod;   }     // Driver Code   static public void Main ()   {   int []num = {3, 4, 5};   int []rem = {2, 3, 1};   int k = num.Length;   Console.WriteLine("x is " +   findMinX(num, rem, k));   }  }  // This code is contributed  // by ajit  
PHP
<?php // PHP program to demonstrate working  // of Chinese remainder Theorem  // Returns modulo inverse of a with  // respect to m using extended Euclid  // Algorithm. Refer below post for details:  // https://www.geeksforgeeks.org/ // multiplicative-inverse-under-modulo-m/  function inv($a, $m) { $m0 = $m; $x0 = 0; $x1 = 1; if ($m == 1) return 0; // Apply extended Euclid Algorithm  while ($a > 1) { // q is quotient  $q = (int)($a / $m); $t = $m; // m is remainder now, process  // same as euclid's algo  $m = $a % $m; $a = $t; $t = $x0; $x0 = $x1 - $q * $x0; $x1 = $t; } // Make x1 positive  if ($x1 < 0) $x1 += $m0; return $x1; } // k is size of num[] and rem[].  // Returns the smallest  // number x such that:  // x % num[0] = rem[0],  // x % num[1] = rem[1],  // ..................  // x % num[k-2] = rem[k-1]  // Assumption: Numbers in num[]  // are pairwise coprime (gcd for  // every pair is 1)  function findMinX($num, $rem, $k) { // Compute product of all numbers  $prod = 1; for ($i = 0; $i < $k; $i++) $prod *= $num[$i]; // Initialize result  $result = 0; // Apply above formula  for ($i = 0; $i < $k; $i++) { $pp = (int)$prod / $num[$i]; $result += $rem[$i] * inv($pp, $num[$i]) * $pp; } return $result % $prod; } // Driver Code  $num = array(3, 4, 5); $rem = array(2, 3, 1); $k = sizeof($num); echo "x is ". findMinX($num, $rem, $k); // This code is contributed by mits  ?>  
JavaScript
<script> // Javascript program to demonstrate working // of Chinese remainder Theorem // Returns modulo inverse of a with // respect to m using extended Euclid // Algorithm. Refer below post for details: // https://www.geeksforgeeks.org/ // multiplicative-inverse-under-modulo-m/ function inv(a, m) {  let m0 = m;  let x0 = 0;  let x1 = 1;  if (m == 1)  return 0;  // Apply extended Euclid Algorithm  while (a > 1)  {  // q is quotient  let q = parseInt(a / m);  let t = m;  // m is remainder now, process  // same as euclid's algo  m = a % m;  a = t;  t = x0;  x0 = x1 - q * x0;  x1 = t;  }  // Make x1 positive  if (x1 < 0)  x1 += m0;  return x1; } // k is size of num[] and rem[]. // Returns the smallest // number x such that: // x % num[0] = rem[0], // x % num[1] = rem[1], // .................. // x % num[k-2] = rem[k-1] // Assumption: Numbers in num[] // are pairwise coprime (gcd for // every pair is 1) function findMinX(num, rem, k) {  // Compute product of all numbers  let prod = 1;  for (let i = 0; i < k; i++)  prod *= num[i];  // Initialize result  let result = 0;  // Apply above formula  for (let i = 0; i < k; i++)  {  pp = parseInt(prod / num[i]);  result += rem[i] * inv(pp,  num[i]) * pp;  }  return result % prod; } // Driver Code let num = new Array(3, 4, 5); let rem = new Array(2, 3, 1); let k = num.length; document.write("x is " + findMinX(num, rem, k)); // This code is contributed by _saurabh_jaiswal </script> 

Output: 

x is 11

Time Complexity : O(N*LogN)

Auxiliary Space : O(1)

 


Next Article

Similar Reads