Pandas DataFrame 删除某行

  1. pandas.DataFrame.drop() 方法中按索引删除行
  2. 根据 Pandas DataFrame 中某一列的值来删除行
Pandas DataFrame 删除某行

本教程说明了如何使用 pandas.DataFrame.drop() 方法在 Pandas 中删除行。

import pandas as pd  kgp_df = pd.DataFrame(  {  "Name": ["Himansh", "Prateek", "Abhishek", "Vidit", "Anupam"],  "Age": [30, 33, 35, 30, 30],  "Weight(KG)": [75, 75, 80, 70, 73],  } ) print("The KGP DataFrame is:") print(kgp_df) 

输出:

The KGP DataFrame is:  Name Age Weight(KG) 0 Himansh 30 75 1 Prateek 33 75 2 Abhishek 35 80 3 Vidit 30 70 4 Anupam 30 73 

我们将使用 kgp_df DataFrame 来解释如何从 Pandas DataFrame 中删除行。

pandas.DataFrame.drop() 方法中按索引删除行

import pandas as pd  kgp_df = pd.DataFrame(  {  "Name": ["Himansh", "Prateek", "Abhishek", "Vidit", "Anupam"],  "Age": [30, 33, 35, 30, 30],  "Weight(KG)": [75, 75, 80, 70, 73],  } )  rows_dropped_df = kgp_df.drop(kgp_df.index[[0, 2]])  print("The KGP DataFrame is:") print(kgp_df, "\n")  print("The KGP DataFrame after dropping 1st and 3rd DataFrame is:") print(rows_dropped_df) 

输出:

The KGP DataFrame is:  Name Age Weight(KG) 0 Himansh 30 75 1 Prateek 33 75 2 Abhishek 35 80 3 Vidit 30 70 4 Anupam 30 73  The KGP DataFrame after dropping 1st and 3rd DataFrame is:  Name Age Weight(KG) 1 Prateek 33 75 3 Vidit 30 70 4 Anupam 30 73 

kgp_df DataFrame 中删除索引为 0 和 2 的行。索引 0 和 2 的行对应 DataFrame 中的第一行和第三行,因为索引是从 0 开始的。

我们也可以使用 DataFrame 的索引来删除这些行,而不是使用默认的索引。

import pandas as pd  kgp_idx = ["A", "B", "C", "D", "E"] kgp_df = pd.DataFrame(  {  "Name": ["Himansh", "Prateek", "Abhishek", "Vidit", "Anupam"],  "Age": [30, 33, 35, 30, 30],  "Weight(KG)": [75, 75, 80, 70, 73],  },  index=kgp_idx, )  rows_dropped_df = kgp_df.drop(["A", "C"])  print("The KGP DataFrame is:") print(kgp_df, "\n")  print("The KGP DataFrame after dropping 1st and 3rd DataFrame is:") print(rows_dropped_df) 

输出:

The KGP DataFrame is:  Name Age Weight(KG) A Himansh 30 75 B Prateek 33 75 C Abhishek 35 80 D Vidit 30 70 E Anupam 30 73  The KGP DataFrame after dropping 1st and 3rd DataFrame is:  Name Age Weight(KG) B Prateek 33 75 D Vidit 30 70 E Anupam 30 73 

它从 DataFrame 中删除索引 AC 的行,或者第一行和第三行。

我们将要删除的行的索引列表传递给 drop() 方法来删除相应的行。

根据 Pandas DataFrame 中某一列的值来删除行

import pandas as pd  kgp_idx = ["A", "B", "C", "D", "E"] kgp_df = pd.DataFrame(  {  "Name": ["Himansh", "Prateek", "Abhishek", "Vidit", "Anupam"],  "Age": [31, 33, 35, 36, 34],  "Weight(KG)": [75, 75, 80, 70, 73],  },  index=kgp_idx, )  young_df_idx = kgp_df[kgp_df["Age"] <= 33].index young_folks = kgp_df.drop(young_df_idx)  print("The KGP DataFrame is:") print(kgp_df, "\n")  print("The DataFrame of folks with age less than or equal to 33 are:") print(young_folks) 

输出:

The KGP DataFrame is:  Name Age Weight(KG) A Himansh 31 75 B Prateek 33 75 C Abhishek 35 80 D Vidit 36 70 E Anupam 34 73  The DataFrame of folks with age less than or equal to 33 are:  Name Age Weight(KG) C Abhishek 35 80 D Vidit 36 70 E Anupam 34 73 

它将删除所有年龄小于或等于 33 岁的行。

我们首先找到所有年龄小于或等于 33 岁的行的索引,然后使用 drop() 方法删除这些行。

Enjoying our tutorials? Subscribe to DelftStack on YouTube to support us in creating more high-quality video guides. Subscribe
作者: Suraj Joshi
Suraj Joshi avatar Suraj Joshi avatar

Suraj Joshi is a backend software engineer at Matrice.ai.

LinkedIn

相关文章 - Pandas DataFrame Row