Pandas 將列值轉換為字串

  1. 使用 apply() 方法將 DataFrame 的列值的資料型別轉換為字串
  2. 使用 applymap() 方法將所有 DataFrame 列的資料型別轉換為 string
  3. 使用 astype() 方法將 DataFrame 列值的資料型別轉換為 string
Pandas 將列值轉換為字串

本教程介紹瞭如何將 DataFrame 的列值的資料型別轉換為字串。

import pandas as pd  employees_df = pd.DataFrame(  {  "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],  "Score": [31, 38, 33, 39, 35],  "Age": [33, 34, 38, 45, 37],  } )  print(employees_df) 

輸出:

 Name Score Age 0 Ayush 31 33 1 Bikram 38 34 2 Ceela 33 38 3 Kusal 39 45 4 Shanty 35 37 

我們將使用上面例子中顯示的 DataFrame 來解釋如何將 DataFrame 的列值的資料型別轉換為字串。

使用 apply() 方法將 DataFrame 的列值的資料型別轉換為字串

import pandas as pd  employees_df = pd.DataFrame(  {  "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],  "Score": [31, 38, 33, 39, 35],  "Age": [33, 34, 38, 45, 37],  } ) print("DataFrame before Conversion:") print(employees_df, "\n") print("Datatype of columns before conversion:") print(employees_df.dtypes, "\n")  employees_df["Age"] = employees_df["Age"].apply(str)  print("DataFrame after conversion:") print(employees_df, "\n") print("Datatype of columns after conversion:") print(employees_df.dtypes) 

輸出:

DataFrame before Conversion:  Name Score Age 0 Ayush 31 33 1 Bikram 38 34 2 Ceela 33 38 3 Kusal 39 45 4 Shanty 35 37  Datatype of columns before conversion: Name object Score int64 Age int64 dtype: object  DataFrame after conversion:  Name Score Age 0 Ayush 31 33 1 Bikram 38 34 2 Ceela 33 38 3 Kusal 39 45 4 Shanty 35 37  Datatype of columns after conversion: Name object Score int64 Age object dtype: object 

它將 Age 列的資料型別從 int64 改為代表字串的 object 型別。

使用 applymap() 方法將所有 DataFrame 列的資料型別轉換為 string

如果我們想將 DataFrame 中所有列值的資料型別改為 string 型別,我們可以使用 applymap() 方法。

import pandas as pd  employees_df = pd.DataFrame(  {  "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],  "Score": [31, 38, 33, 39, 35],  "Age": [33, 34, 38, 45, 37],  } ) print("DataFrame before Conversion:") print(employees_df, "\n") print("Datatype of columns before conversion:") print(employees_df.dtypes, "\n")  employees_df = employees_df.applymap(str)  print("DataFrame after conversion:") print(employees_df, "\n") print("Datatype of columns after conversion:") print(employees_df.dtypes) 

輸出:

DataFrame before Conversion:  Name Score Age 0 Ayush 31 33 1 Bikram 38 34 2 Ceela 33 38 3 Kusal 39 45 4 Shanty 35 37 zeppy@zeppy-G7-7588:~/test/Week-01/taddaa$ python3 1.py DataFrame before Conversion:  Name Score Age 0 Ayush 31 33 1 Bikram 38 34 2 Ceela 33 38 3 Kusal 39 45 4 Shanty 35 37  Datatype of columns before conversion: Name object Score int64 Age int64 dtype: object  DataFrame after conversion:  Name Score Age 0 Ayush 31 33 1 Bikram 38 34 2 Ceela 33 38 3 Kusal 39 45 4 Shanty 35 37  Datatype of columns after conversion: Name object Score object Age object dtype: object 

它將所有 DataFrame 列的資料型別轉換為 string 型別,在輸出中用 object 表示。

使用 astype() 方法將 DataFrame 列值的資料型別轉換為 string

import pandas as pd  employees_df = pd.DataFrame(  {  "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],  "Score": [31, 38, 33, 39, 35],  "Age": [33, 34, 38, 45, 37],  } ) print("DataFrame before Conversion:") print(employees_df, "\n") print("Datatype of columns before conversion:") print(employees_df.dtypes, "\n")  employees_df["Score"] = employees_df["Score"].astype(str)  print("DataFrame after conversion:") print(employees_df, "\n") print("Datatype of columns after conversion:") print(employees_df.dtypes) 

輸出:

DataFrame before Conversion:  Name Score Age 0 Ayush 31 33 1 Bikram 38 34 2 Ceela 33 38 3 Kusal 39 45 4 Shanty 35 37  Datatype of columns before conversion: Name object Score int64 Age int64 dtype: object  DataFrame after conversion:  Name Score Age 0 Ayush 31 33 1 Bikram 38 34 2 Ceela 33 38 3 Kusal 39 45 4 Shanty 35 37  Datatype of columns after conversion: Name object Score object Age int64 dtype: object 

它將 employees_df Dataframe 中 Score 列的資料型別轉換為 string 型別。

Enjoying our tutorials? Subscribe to DelftStack on YouTube to support us in creating more high-quality video guides. Subscribe
作者: Suraj Joshi
Suraj Joshi avatar Suraj Joshi avatar

Suraj Joshi is a backend software engineer at Matrice.ai.

LinkedIn

相關文章 - Pandas DataFrame Column