Pandas DataFrame 刪除某行
Suraj Joshi 2023年1月30日 Pandas Pandas DataFrame Row

本教程說明了如何使用 pandas.DataFrame.drop()
方法在 Pandas 中刪除行。
import pandas as pd kgp_df = pd.DataFrame( { "Name": ["Himansh", "Prateek", "Abhishek", "Vidit", "Anupam"], "Age": [30, 33, 35, 30, 30], "Weight(KG)": [75, 75, 80, 70, 73], } ) print("The KGP DataFrame is:") print(kgp_df)
輸出:
The KGP DataFrame is: Name Age Weight(KG) 0 Himansh 30 75 1 Prateek 33 75 2 Abhishek 35 80 3 Vidit 30 70 4 Anupam 30 73
我們將使用 kgp_df
DataFrame 來解釋如何從 Pandas DataFrame 中刪除行。
在 pandas.DataFrame.drop()
方法中按索引刪除行
import pandas as pd kgp_df = pd.DataFrame( { "Name": ["Himansh", "Prateek", "Abhishek", "Vidit", "Anupam"], "Age": [30, 33, 35, 30, 30], "Weight(KG)": [75, 75, 80, 70, 73], } ) rows_dropped_df = kgp_df.drop(kgp_df.index[[0, 2]]) print("The KGP DataFrame is:") print(kgp_df, "\n") print("The KGP DataFrame after dropping 1st and 3rd DataFrame is:") print(rows_dropped_df)
輸出:
The KGP DataFrame is: Name Age Weight(KG) 0 Himansh 30 75 1 Prateek 33 75 2 Abhishek 35 80 3 Vidit 30 70 4 Anupam 30 73 The KGP DataFrame after dropping 1st and 3rd DataFrame is: Name Age Weight(KG) 1 Prateek 33 75 3 Vidit 30 70 4 Anupam 30 73
從 kgp_df
DataFrame 中刪除索引為 0 和 2 的行。索引 0 和 2 的行對應 DataFrame 中的第一行和第三行,因為索引是從 0 開始的。
我們也可以使用 DataFrame 的索引來刪除這些行,而不是使用預設的索引。
import pandas as pd kgp_idx = ["A", "B", "C", "D", "E"] kgp_df = pd.DataFrame( { "Name": ["Himansh", "Prateek", "Abhishek", "Vidit", "Anupam"], "Age": [30, 33, 35, 30, 30], "Weight(KG)": [75, 75, 80, 70, 73], }, index=kgp_idx, ) rows_dropped_df = kgp_df.drop(["A", "C"]) print("The KGP DataFrame is:") print(kgp_df, "\n") print("The KGP DataFrame after dropping 1st and 3rd DataFrame is:") print(rows_dropped_df)
輸出:
The KGP DataFrame is: Name Age Weight(KG) A Himansh 30 75 B Prateek 33 75 C Abhishek 35 80 D Vidit 30 70 E Anupam 30 73 The KGP DataFrame after dropping 1st and 3rd DataFrame is: Name Age Weight(KG) B Prateek 33 75 D Vidit 30 70 E Anupam 30 73
它從 DataFrame 中刪除索引 A
和 C
的行,或者第一行和第三行。
我們將要刪除的行的索引列表傳遞給 drop()
方法來刪除相應的行。
根據 Pandas DataFrame 中某一列的值來刪除行
import pandas as pd kgp_idx = ["A", "B", "C", "D", "E"] kgp_df = pd.DataFrame( { "Name": ["Himansh", "Prateek", "Abhishek", "Vidit", "Anupam"], "Age": [31, 33, 35, 36, 34], "Weight(KG)": [75, 75, 80, 70, 73], }, index=kgp_idx, ) young_df_idx = kgp_df[kgp_df["Age"] <= 33].index young_folks = kgp_df.drop(young_df_idx) print("The KGP DataFrame is:") print(kgp_df, "\n") print("The DataFrame of folks with age less than or equal to 33 are:") print(young_folks)
輸出:
The KGP DataFrame is: Name Age Weight(KG) A Himansh 31 75 B Prateek 33 75 C Abhishek 35 80 D Vidit 36 70 E Anupam 34 73 The DataFrame of folks with age less than or equal to 33 are: Name Age Weight(KG) C Abhishek 35 80 D Vidit 36 70 E Anupam 34 73
它將刪除所有年齡小於或等於 33 歲的行。
我們首先找到所有年齡小於或等於 33 歲的行的索引,然後使用 drop()
方法刪除這些行。
Enjoying our tutorials? Subscribe to DelftStack on YouTube to support us in creating more high-quality video guides. Subscribe
作者: Suraj Joshi
Suraj Joshi is a backend software engineer at Matrice.ai.
LinkedIn