Skip to content

Commit e588033

Browse files
Update README.md
1 parent 8f7187f commit e588033

File tree

1 file changed

+46
-46
lines changed

1 file changed

+46
-46
lines changed

README.md

Lines changed: 46 additions & 46 deletions
Original file line numberDiff line numberDiff line change
@@ -44,66 +44,66 @@ By the end of this book, you will be equipped with the skills you need to implem
4444

4545
## Table of contents
4646

47-
### [1. Introduction to Deep Learning](#)
47+
### [1. Introduction to Deep Learning](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/01.%20Introduction%20to%20Deep%20Learning)
4848

49-
* [1.1. What is Deep Learning?](#)
49+
* [1.1. What is Deep Learning?](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/01.%20Introduction%20to%20Deep%20Learning/1.01%20What%20is%20Deep%20Learning%3F.ipynb)
5050
* 1.2. Biological and Artifical Neurons
5151
* 1.3. ANN and its Layers
5252
* 1.4. Exploring Activation Functions
5353
* 1.5. Forward Propagation in ANN
5454
* 1.6. How does ANN learn?
5555
* 1.7. Debugging Gradient Descent with Gradient Checking
5656
* 1.8. Putting it all together
57-
* [1.9. Building Neural Network from Scratch](#)
57+
* [1.9. Building Neural Network from Scratch](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/01.%20Introduction%20to%20Deep%20Learning/1.09%20Building%20Neural%20Network%20from%20scratch.ipynb)
5858

5959

60-
### [2. Getting to Know TensorFlow](#)
60+
### [2. Getting to Know TensorFlow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/02.%20Getting%20to%20Know%20TensorFlow)
6161

6262
* 2.1. What is TensorFlow?
6363
* 2.2. Understanding Computational Graphs and Sessions
6464
* 2.3. Variables, Constants, and Placeholders
6565
* 2.4. Introducing TensorBoard
66-
* [2.5. Handwritten digits classification using Tensorflow ](#)
66+
* [2.5. Handwritten digits classification using Tensorflow ](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/02.%20Getting%20to%20Know%20TensorFlow/2.05%20Handwritten%20digits%20classification%20using%20TensorFlow.ipynb)
6767
* 2.6. Visualizing Computational graph in TensorBord
6868
* 2.7. Introducing Eager execution
69-
* [2.8. Math operations in TensorFlow](#)
70-
* [2.9. Tensorflow 2.0 and Keras](#)
71-
* 2.10. MNIST digits classification in Tensorflow 2.0
72-
* 2.11. Should we use Keras or TensorFlow?
69+
* [2.8. Math operations in TensorFlow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/02.%20Getting%20to%20Know%20TensorFlow/2.08%20Math%20operations%20in%20TensorFlow.ipynb)
70+
* 2.9. Tensorflow 2.0 and Keras
71+
* [2.10. MNIST digits classification in Tensorflow 2.0](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/02.%20Getting%20to%20Know%20TensorFlow/2.10%20MNIST%20digits%20classification%20in%20TensorFlow%202.0.ipynb)
72+
* [2.11. Should we use Keras or TensorFlow?](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/02.%20Getting%20to%20Know%20TensorFlow/2.11%20Should%20we%20use%20Keras%20or%20TensorFlow%3F.ipynb)
7373

7474

7575

76-
### [3. Gradient Descent and its variants](#)
76+
### [3. Gradient Descent and its variants](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/03.%20Gradient%20Descent%20and%20its%20variants)
7777

78-
* [3.1. Demystifying Gradient Descent](#)
79-
* [3.2. Performing Gradient Descent in Regression](#)
78+
* [3.1. Demystifying Gradient Descent](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/03.%20Gradient%20Descent%20and%20its%20variants/3.01%20Demystifying%20Gradient%20Descent.ipynb)
79+
* [3.2. Performing Gradient Descent in Regression](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/03.%20Gradient%20Descent%20and%20its%20variants/3.02%20Performing%20Gradient%20Descent%20in%20Regression.ipynb)
8080
* 3.3. Gradient Descent vs Stochastic Gradient Descent
8181
* 3.4. Momentum based Gradient Descent
8282
* 3.5. Adaptive methods of Gradient Descent
83-
* [ 3.6. Implementing Various Gradient descent methods from Scratch](#)
83+
* [ 3.6. Implementing Various Gradient descent methods from Scratch](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/03.%20Gradient%20Descent%20and%20its%20variants/3.06%20%20Implementing%20Several%20Variants%20of%20Gradient%20Descent%20from%20Scratch.ipynb)
8484

8585

8686

87-
### [4. Generating Song lyrics with RNN](#)
87+
### [4. Generating Song lyrics with RNN](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/04.%20Generating%20Song%20Lyrics%20Using%20RNN)
8888

8989

90-
* [4.1. Hola Recurrent Neural Networks](#)
90+
* [4.1. Hola Recurrent Neural Networks](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/04.%20Generating%20Song%20Lyrics%20Using%20RNN/4.01%20Hola%20Recurrent%20Neural%20Networks.ipynb)
9191
* 4.2. Forward Propagation in RNN
9292
* 4.3. Backpropagation through time (BPTT)
9393
* 4.4. Deriving BPTT step by step
9494
* 4.5. Vanishing and Exploding Gradients
95-
* [4.6. Generating song lyrics using RNN](#)
95+
* [4.6. Generating song lyrics using RNN](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/04.%20Generating%20Song%20Lyrics%20Using%20RNN/4.06%20Generating%20Song%20Lyrics%20Using%20RNN.ipynb)
9696
* 4.7. Different types of RNN architectures
9797

9898

99-
### [5. Improvements to the RNN](#)
99+
### [5. Improvements to the RNN](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/05.%20Improvements%20to%20the%20RNN)
100100

101-
* [5.1. LSTM to the Rescue](#)
101+
* 5.1. LSTM to the Rescue
102102
* 5.2. Understanding the LSTM cell
103103
* 5.3. Forward propagation in LSTM
104104
* 5.4. Backpropagation in LSTM
105105
* 5.5. Deriving backpropagation of LSTM Step by step
106-
* [5.6. Predicting Bitcoins price using LSTM](#)
106+
* [5.6. Predicting Bitcoins price using LSTM](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/05.%20Improvements%20to%20the%20RNN/5.06%20Predicting%20Bitcoins%20price%20using%20LSTM%20RNN.ipynb)
107107
* 5.7. Gated Recurrent Units
108108
* 5.8. Understanding GRU cell
109109
* 5.9. Forward propagation in GRU cell
@@ -114,84 +114,84 @@ By the end of this book, you will be equipped with the skills you need to implem
114114
* 5.14. Language Translation Seq2seq models
115115

116116

117-
### [6. Demystifying Convolutional Networks](#)
117+
### [6. Demystifying Convolutional Networks](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/06.%20Demystifying%20Convolutional%20Networks)
118118

119119
* 6.1. What is CNN?
120120
* 6.2. Architecture of CNN
121121
* 6.3. Math of CNN
122-
* [ 6.4. Implementing CNN in tensorflow](#)
122+
* [ 6.4. Implementing CNN in tensorflow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/06.%20Demystifying%20Convolutional%20Networks/6.04%20Implementing%20CNN%20in%20TensorFlow.ipynb)
123123
* 6.5. Different types of CNN architectures
124124
* 6.6. Capsule networks
125-
* [6.7. Building capsule networks in Tensorflow](#)
125+
* [6.7. Building capsule networks in Tensorflow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/06.%20Demystifying%20Convolutional%20Networks/6.07%20Building%20Capsule%20Networks%20in%20TensorFlow.ipynb)
126126

127127

128-
### [7. Learning Text Representations](#)
128+
### [7. Learning Text Representations](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/07.%20Learning%20Text%20Representations)
129129

130-
* 7.1. Understanding Word2vec Model
130+
* [7.1. Understanding Word2vec Model](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/07.%20Learning%20Text%20Representations/7.01%20Understanding%20Word2vec%20Model.ipynb)
131131
* 7.2. Continuous Bag of words
132132
* 7.3. Math of CBOW
133133
* 7.4. Skip- Gram model
134134
* 7.5. Math of Skip-Gram
135135
* 7.6. various training strategies
136-
* [ 7.7. Building word2vec model using Gensim](#)
137-
* [7.8. Visualizing word embeddings in TensorBoard](#)
136+
* [ 7.7. Building word2vec model using Gensim](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/07.%20Learning%20Text%20Representations/7.07%20Building%20word2vec%20model%20using%20Gensim.ipynb)
137+
* [7.8. Visualizing word embeddings in TensorBoard](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/07.%20Learning%20Text%20Representations/7.08%20Visualizing%20Word%20Embeddings%20in%20TensorBoard.ipynb)
138138
* 7.9. Converting documents to vectors using doc2vec
139-
* [7.10. Finding similar documents using Doc2vec](#)
139+
* [7.10. Finding similar documents using Doc2vec](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/07.%20Learning%20Text%20Representations/7.10%20Finding%20similar%20documents%20using%20Doc2Vec.ipynb)
140140
* 7.11. Understanding skip thoughts algorithm
141141
* 7.12 Quick thoughts for sentence embeddings
142142

143143

144-
### [8. Generating Images using GANs](#)
144+
### [8. Generating Images using GANs](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/08.%20Generating%20Images%20using%20GANs)
145145

146-
* 8.1. Distinguishing generative and discriminative models
146+
* [8.1. Distinguishing generative and discriminative models](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/08.%20Generating%20Images%20using%20GANs/8.04%20Demystifying%20GAN%20Loss%20Function.ipynb)
147147
* 8.2. Say hello to GANs
148148
* 8.3. Architecture of GANs
149149
* 8.4. Demystifying GAN loss function
150-
* [8.5. Generating images using GAN in TensorFlow](#)
150+
* [8.5. Generating images using GAN in TensorFlow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/08.%20Generating%20Images%20using%20GANs/8.05%20Generating%20images%20using%20GAN%20in%20TensorFlow.ipynb)
151151
* 8.6. DCGAN - Adding convolution to the GAN
152-
* [8.7. Implementing DCGAN to generate CIFAR images](#)
152+
* [8.7. Implementing DCGAN to generate CIFAR images](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/08.%20Generating%20Images%20using%20GANs/8.07%20Implementing%20DCGAN%20to%20Generate%20CIFAR%20Images.ipynb)
153153
* 8.8. Least Squares GAN
154-
* [8.9. Building LSGAN in tensorflow](#)
154+
* [8.9. Building LSGAN in tensorflow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/08.%20Generating%20Images%20using%20GANs/8.09%20Building%20LSGAN%20in%20TensorFlow.ipynb)
155155
* 8.10. WGAN - GANs with Wasserstein distance
156156

157157

158-
### [9. Learning more about GANs](#)
158+
### [9. Learning more about GANs](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/09.%20Learning%20more%20about%20GANs)
159159

160160
* 9.1. Conditional GAN
161-
* [9.2. Generating specific digits using CGAN](#)
161+
* [9.2. Generating specific digits using CGAN](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/09.%20Learning%20more%20about%20GANs/9.02%20Generating%20Specific%20Handwritten%20Digit%20Using%20CGAN.ipynb)
162162
* 9.3. Understanding InfoGAN
163163
* 9.4. Architecture of InfoGAN
164-
* [9.5. Constructing InfoGAN in tensorflow](#)
164+
* [9.5. Constructing InfoGAN in tensorflow](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/09.%20Learning%20more%20about%20GANs/9.05%20Constructing%20InfoGan%20in%20Tensorflow.ipynb)
165165
* 9.6. Translating images using CycleGAN
166-
* [9.7. Converting photos to paintings using CycleGAN](#)
166+
* [9.7. Converting photos to paintings using CycleGAN](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/09.%20Learning%20more%20about%20GANs/9.07%20Converting%20photos%20to%20paintings%20using%20CycleGAN.ipynb)
167167
* 9.8. Text to image synthesis using Stack GAN
168168

169169

170-
### [10. Reconstructing inputs using Autoencoders](#)
170+
### [10. Reconstructing inputs using Autoencoders](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders)
171171

172172
* 10.1. What is Autoencoder?
173173
* 10.2. Understanding the architecture of autoencoders
174-
* [10.3. Reconstructing MNIST images using autoencoders](#)
174+
* [10.3. Reconstructing MNIST images using autoencoders](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.03%20Reconstructing%20MNIST%20images%20using%20Autoencoder.ipynb)
175175
* 10.4. Autoencoders with convolution
176-
* [10.5. Building convolution autoencoder](#)
176+
* [10.5. Building convolution autoencoder](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.05%20Building%20Convolutional%20Autoencoder.ipynb)
177177
* 10.6. Exploring denoising autoencoder
178-
* [10.7. Denoising images using DAE](#)
178+
* [10.7. Denoising images using DAE](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.07%20Denoising%20images%20using%20Denoising%20Autoencoder.ipynb)
179179
* 10.8. Understanding sparse autoencoders
180-
* [10.9. Building sparse autoencoders](#)
180+
* [10.9. Building sparse autoencoders](#https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.09%20Building%20the%20Sparse%20Autoencoder.ipynb
181181
* 10.10. Learning to use contractive autoencoders
182-
* [10.11. Implementing contractive autoencoders](#)
182+
* [10.11. Implementing contractive autoencoders](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.11%20Implementing%20Contractive%20Autoencoders.ipynb)
183183
* 10.12. Dissecting variational autoencoders
184-
* [10.13. Generating images using VAE](#)
184+
* [10.13. Generating images using VAE](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/10.%20Reconsturcting%20Inputs%20using%20Autoencoders/10.13%20Generating%20images%20using%20VAE.ipynb)
185185

186186

187187

188188

189-
### [11. Exploring few-shot learning algorithms](#)
189+
### [11. Exploring few-shot learning algorithms](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/tree/master/11.%20Exploring%20Few%20Shot%20Learning%20Algorithms)
190190

191-
* [11.1. What is few-shot learning?](#)
191+
* [11.1. What is few-shot learning?](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/11.%20Exploring%20Few%20Shot%20Learning%20Algorithms/11.01%20What%20is%20few-shot%20learning%3F.ipynb)
192192
* 11.2. Understanding Siamese Networks?
193193
* 11.3. Prototypical Networks
194194
* 11.4. Relation Networks
195195
* 11.5. Matching Networks
196196
* 11.6. Architecture of Matching networks
197-
* [11.7. What's Next?](#)
197+
* [11.7. What's Next?](https://github.com/sudharsan13296/Hands-On-Deep-Learning-Algorithms-with-Python/blob/master/11.%20Exploring%20Few%20Shot%20Learning%20Algorithms/11.07%20What's%20Next%3F.ipynb)

0 commit comments

Comments
 (0)