@@ -23,7 +23,7 @@ def __init__(
2323 super (block , self ).__init__ ()
2424 self .expansion = 4
2525 self .conv1 = nn .Conv2d (
26- in_channels , intermediate_channels , kernel_size = 1 , stride = 1 , padding = 0
26+ in_channels , intermediate_channels , kernel_size = 1 , stride = 1 , padding = 0 , bias = False
2727 )
2828 self .bn1 = nn .BatchNorm2d (intermediate_channels )
2929 self .conv2 = nn .Conv2d (
@@ -32,6 +32,7 @@ def __init__(
3232 kernel_size = 3 ,
3333 stride = stride ,
3434 padding = 1 ,
35+ bias = False
3536 )
3637 self .bn2 = nn .BatchNorm2d (intermediate_channels )
3738 self .conv3 = nn .Conv2d (
@@ -40,6 +41,7 @@ def __init__(
4041 kernel_size = 1 ,
4142 stride = 1 ,
4243 padding = 0 ,
44+ bias = False
4345 )
4446 self .bn3 = nn .BatchNorm2d (intermediate_channels * self .expansion )
4547 self .relu = nn .ReLU ()
@@ -70,7 +72,7 @@ class ResNet(nn.Module):
7072 def __init__ (self , block , layers , image_channels , num_classes ):
7173 super (ResNet , self ).__init__ ()
7274 self .in_channels = 64
73- self .conv1 = nn .Conv2d (image_channels , 64 , kernel_size = 7 , stride = 2 , padding = 3 )
75+ self .conv1 = nn .Conv2d (image_channels , 64 , kernel_size = 7 , stride = 2 , padding = 3 , bias = False )
7476 self .bn1 = nn .BatchNorm2d (64 )
7577 self .relu = nn .ReLU ()
7678 self .maxpool = nn .MaxPool2d (kernel_size = 3 , stride = 2 , padding = 1 )
@@ -122,6 +124,7 @@ def _make_layer(self, block, num_residual_blocks, intermediate_channels, stride)
122124 intermediate_channels * 4 ,
123125 kernel_size = 1 ,
124126 stride = stride ,
127+ bias = False
125128 ),
126129 nn .BatchNorm2d (intermediate_channels * 4 ),
127130 )
0 commit comments