|
| 1 | + |
| 2 | +# coding: utf-8 |
| 3 | + |
| 4 | +# In[31]: |
| 5 | + |
| 6 | + |
| 7 | +import pickle |
| 8 | +import numpy |
| 9 | +numpy.random.seed(42) |
| 10 | + |
| 11 | + |
| 12 | +# In[32]: |
| 13 | + |
| 14 | + |
| 15 | +word_file = "C:/Users/Geekquad/ud120-projects/feature_selection/word_data_modified_unix.pkl" |
| 16 | +author_file = "C:/Users/Geekquad/ud120-projects/feature_selection/email_authors_modified_unix.pkl" |
| 17 | +word_data = pickle.load(open(word_file, "rb")) |
| 18 | +author_data = pickle.load(open(author_file, "rb")) |
| 19 | + |
| 20 | + |
| 21 | +# In[33]: |
| 22 | + |
| 23 | + |
| 24 | +import sklearn |
| 25 | +from sklearn.cross_validation import train_test_split |
| 26 | +features_train, features_test, labels_train, labels_test = train_test_split(word_data, author_data, test_size=0.1, random_state=42) |
| 27 | + |
| 28 | + |
| 29 | +# In[34]: |
| 30 | + |
| 31 | + |
| 32 | +from sklearn.feature_extraction.text import TfidfVectorizer |
| 33 | +vect = TfidfVectorizer(sublinear_tf=True, max_df=0.5,stop_words="english") |
| 34 | +features_train = vect.fit_transform(features_train) |
| 35 | +features_test = vect.transform(features_test).toarray() |
| 36 | + |
| 37 | + |
| 38 | +# In[37]: |
| 39 | + |
| 40 | + |
| 41 | +#### training only on 150 data points to put myself into overfit regime |
| 42 | +features_train = features_train[:150].toarray() |
| 43 | +labels_train = labels_train[:150] |
| 44 | + |
| 45 | + |
| 46 | +# In[38]: |
| 47 | + |
| 48 | + |
| 49 | +print('number of training points: ', len(features_train)) |
| 50 | + |
| 51 | + |
| 52 | +# In[45]: |
| 53 | + |
| 54 | + |
| 55 | +"""overfitting the Decision Tree and cehcking the accuracy""" |
| 56 | +from sklearn.tree import DecisionTreeClassifier |
| 57 | +from sklearn.metrics import classification_report, confusion_matrix, accuracy_score |
| 58 | + |
| 59 | +clf = DecisionTreeClassifier() |
| 60 | +clf.fit(features_train, labels_train) |
| 61 | +y_pred = clf.predict(features_test) |
| 62 | + |
| 63 | + |
| 64 | +print(confusion_matrix(labels_test, y_pred)) |
| 65 | +print(classification_report(labels_test, y_pred)) |
| 66 | +print(accuracy_score(labels_test, y_pred)) |
| 67 | + |
| 68 | + |
| 69 | +# Yes, it has an accuracy much higher than it should be. |
| 70 | +# Hence, finding the most important features. |
0 commit comments