Skip to content

Commit e8989ca

Browse files
authored
Update README.md
1 parent abb5e1d commit e8989ca

File tree

1 file changed

+15
-4
lines changed

1 file changed

+15
-4
lines changed

README.md

Lines changed: 15 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -45,8 +45,19 @@ Install all dependent libraries:
4545
```bash
4646
pip install -r requirements.txt
4747
```
48-
49-
## 3. Types of Unet
48+
## 3. Run the file
49+
50+
Add all your folders to this location
51+
```
52+
t_data = '' # Input data
53+
l_data = '' #Input Label
54+
test_image = '' #Image to be predicted while training
55+
test_label = '' #Label of the prediction Image
56+
test_folderP = '' #Test folder Image
57+
test_folderL = '' #Test folder Label for calculating the Dice score
58+
```
59+
60+
## 4. Types of Unet
5061

5162
**Unet**
5263
![unet1](/images/unet1.png)
@@ -67,7 +78,7 @@ Install all dependent libraries:
6778

6879
![nested](/images/nested.jpg)
6980

70-
## 4. Visualization
81+
## 5. Visualization
7182

7283
To plot the loss , Visdom would be required. The code is already written, just uncomment the required part.
7384
Gradient flow can be used too. Taken from (https://discuss.pytorch.org/t/check-gradient-flow-in-network/15063/10)
@@ -97,7 +108,7 @@ Still have to tweak some parameters to get visualization. Have messed up this tr
97108

98109
<img src="https://github.com/bigmb/Unet-Segmentation-Pytorch-Nest-of-Unets/blob/master/images/in2.png" width="480">
99110

100-
## 5. Results
111+
## 6. Results
101112

102113
**Dice Score for hippocampus segmentation**
103114

0 commit comments

Comments
 (0)