1414@pytest .mark .skipif (nogpu , reason = "No GPU available" ) 
1515def  test_gpu_sinkhorn ():
1616
17-  np .random .seed (0 )
17+  rng   =   np .random .RandomState (0 )
1818
1919 def  describe_res (r ):
2020 print ("min:{:.3E}, max::{:.3E}, mean::{:.3E}, std::{:.3E}" .format (
2121 np .min (r ), np .max (r ), np .mean (r ), np .std (r )))
2222
2323 for  n_samples  in  [50 , 100 , 500 , 1000 ]:
2424 print (n_samples )
25-  a  =  np . random .rand (n_samples  //  4 , 100 )
26-  b  =  np . random .rand (n_samples , 100 )
25+  a  =  rng .rand (n_samples  //  4 , 100 )
26+  b  =  rng .rand (n_samples , 100 )
2727 time1  =  time .time ()
2828 transport  =  ot .da .OTDA_sinkhorn ()
2929 transport .fit (a , b )
@@ -43,17 +43,18 @@ def describe_res(r):
4343
4444@pytest .mark .skipif (nogpu , reason = "No GPU available" ) 
4545def  test_gpu_sinkhorn_lpl1 ():
46-  np .random .seed (0 )
46+ 
47+  rng  =  np .random .RandomState (0 )
4748
4849 def  describe_res (r ):
4950 print ("min:{:.3E}, max:{:.3E}, mean:{:.3E}, std:{:.3E}" 
5051 .format (np .min (r ), np .max (r ), np .mean (r ), np .std (r )))
5152
5253 for  n_samples  in  [50 , 100 , 500 ]:
5354 print (n_samples )
54-  a  =  np . random .rand (n_samples  //  4 , 100 )
55+  a  =  rng .rand (n_samples  //  4 , 100 )
5556 labels_a  =  np .random .randint (10 , size = (n_samples  //  4 ))
56-  b  =  np . random .rand (n_samples , 100 )
57+  b  =  rng .rand (n_samples , 100 )
5758 time1  =  time .time ()
5859 transport  =  ot .da .OTDA_lpl1 ()
5960 transport .fit (a , labels_a , b )
0 commit comments