Skip to content

Commit a9d2051

Browse files
authored
chore: Merge pull request TheAlgorithms#783 from lvlte/ProjectEuler/018
Project Euler - Problem 18
2 parents 5f601fa + 53f2e3d commit a9d2051

File tree

3 files changed

+131
-0
lines changed

3 files changed

+131
-0
lines changed

DIRECTORY.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -197,6 +197,7 @@
197197
* [Problem014](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem014.js)
198198
* [Problem015](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem015.js)
199199
* [Problem016](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem016.js)
200+
* [Problem018](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem018.js)
200201
* [Problem020](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem020.js)
201202
* [Problem1](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem1.js)
202203
* [Problem10](https://github.com/TheAlgorithms/Javascript/blob/master/Project-Euler/Problem10.js)

Project-Euler/Problem018.js

Lines changed: 112 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,112 @@
1+
/**
2+
* @file Provides solution for Project Euler Problem 18 - Maximum path sum I
3+
* @author Eric Lavault {@link https://github.com/lvlte}
4+
* @license MIT
5+
*/
6+
7+
/**
8+
* Problem 18 - Maximum path sum I
9+
*
10+
* @see {@link https://projecteuler.net/problem=18}
11+
*
12+
* By starting at the top of the triangle below and moving to adjacent numbers
13+
* on the row below, the maximum total from top to bottom is 23 :
14+
*
15+
* 3
16+
* 7 4
17+
* 2 4 6
18+
* 8 5 9 3
19+
*
20+
* That is, 3 + 7 + 4 + 9 = 23.
21+
*
22+
* Find the maximum total from top to bottom of the triangle below :
23+
*
24+
* 75
25+
* 95 64
26+
* 17 47 82
27+
* 18 35 87 10
28+
* 20 04 82 47 65
29+
* 19 01 23 75 03 34
30+
* 88 02 77 73 07 63 67
31+
* 99 65 04 28 06 16 70 92
32+
* 41 41 26 56 83 40 80 70 33
33+
* 41 48 72 33 47 32 37 16 94 29
34+
* 53 71 44 65 25 43 91 52 97 51 14
35+
* 70 11 33 28 77 73 17 78 39 68 17 57
36+
* 91 71 52 38 17 14 91 43 58 50 27 29 48
37+
* 63 66 04 68 89 53 67 30 73 16 69 87 40 31
38+
* 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
39+
*
40+
* NOTE: As there are only 16384 routes, it is possible to solve this problem
41+
* by trying every route. However, Problem 67, is the same challenge with a
42+
* triangle containing one-hundred rows; it cannot be solved by brute force,
43+
* and requires a clever method! ;o)
44+
*/
45+
46+
const triangle = `
47+
75
48+
95 64
49+
17 47 82
50+
18 35 87 10
51+
20 04 82 47 65
52+
19 01 23 75 03 34
53+
88 02 77 73 07 63 67
54+
99 65 04 28 06 16 70 92
55+
41 41 26 56 83 40 80 70 33
56+
41 48 72 33 47 32 37 16 94 29
57+
53 71 44 65 25 43 91 52 97 51 14
58+
70 11 33 28 77 73 17 78 39 68 17 57
59+
91 71 52 38 17 14 91 43 58 50 27 29 48
60+
63 66 04 68 89 53 67 30 73 16 69 87 40 31
61+
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
62+
`
63+
64+
export const maxPathSum = function (grid = triangle) {
65+
/**
66+
* If we reduce the problem to its simplest form, considering :
67+
*
68+
* 7 -> The max sum depends on the two adjacent numbers below 7,
69+
* 2 4 not 7 itself.
70+
*
71+
* obviously 4 > 2 therefore the max sum is 7 + 4 = 11
72+
*
73+
* 6
74+
* Likewise, with : 4 6 6 > 4 therefore the max sum is 6 + 6 = 12
75+
*
76+
* Now, let's say we are given :
77+
*
78+
* 3
79+
* 7 6
80+
* 2 4 6
81+
*
82+
* and we decompose it into sub-problems such that each one fits the simple
83+
* case above, we got :
84+
*
85+
* . . 3
86+
* 7 . . 6 ? ?
87+
* 2 4 . . 4 6 . . .
88+
*
89+
* Again, considering any number, the best path depends on the two adjacent
90+
* numbers below it, not the number itself. That's why we have to compute
91+
* the max sum from bottom to top, replacing each number with the sum of
92+
* that number plus the greatest of the two adjacent numbers computed from
93+
* the previous row.
94+
*
95+
* . . 3 15
96+
* 11 . . 12 -> 11 12 -> x x
97+
* x x . . x x x x x x x x
98+
*
99+
* We are simplifying a complicated problem by breaking it down into simpler
100+
* sub-problems in a recursive manner, this is called Dynamic Programming.
101+
*/
102+
103+
grid = grid.split(/\r\n|\n/).filter(l => l).map(r => r.split(' ').map(n => +n))
104+
105+
for (let i = grid.length - 2; i >= 0; i--) {
106+
for (let j = 0; j < grid[i].length; j++) {
107+
grid[i][j] += Math.max(grid[i + 1][j], grid[i + 1][j + 1])
108+
}
109+
}
110+
111+
return grid[0][0]
112+
}
Lines changed: 18 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,18 @@
1+
import { maxPathSum } from '../Problem018'
2+
3+
const example = `
4+
3
5+
7 4
6+
2 4 6
7+
8 5 9 3
8+
`
9+
10+
describe('Check Problem 18 - Maximum path sum I', () => {
11+
it('Check example', () => {
12+
expect(maxPathSum(example)).toBe(23)
13+
})
14+
15+
it('Check solution', () => {
16+
expect(maxPathSum()).toBe(1074)
17+
})
18+
})

0 commit comments

Comments
 (0)