teensy36

Constants

const ( D00= PB16 D01= PB17 D02= PD00 D03= PA12 D04= PA13 D05= PD07 D06= PD04 D07= PD02 D08= PD03 D09= PC03 D10= PC04 D11= PC06 D12= PC07 D13= PC05 D14= PD01 D15= PC00 D16= PB00 D17= PB01 D18= PB03 D19= PB02 D20= PD05 D21= PD06 D22= PC01 D23= PC02 D24= PE26 D25= PA05 D26= PA14 D27= PA15 D28= PA16 D29= PB18 D30= PB19 D31= PB10 D32= PB11 D33= PE24 D34= PE25 D35= PC08 D36= PC09 D37= PC10 D38= PC11 D39= PA17 D40= PA28 D41= PA29 D42= PA26 D43= PB20 D44= PB22 D45= PB23 D46= PB21 D47= PD08 D48= PD09 D49= PB04 D50= PB05 D51= PD14 D52= PD13 D53= PD12 D54= PD15 D55= PD11 D56= PE10 D57= PE11 D58= PE00 D59= PE01 D60= PE02 D61= PE03 D62= PE04 D63= PE05 ) 

digital IO

const LED = PC05 

LED on the Teensy

const Device = deviceName 

Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.

The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.

const ( KHz= 1000 MHz= 1000_000 GHz= 1000_000_000 ) 

Generic constants.

const NoPin = Pin(0xff) 

NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).

const ( PinInputPinMode= iota PinInputPullup PinInputPulldown PinOutput PinOutputOpenDrain PinDisable ) 
const ( PinInputPullUp= PinInputPullup PinInputPullDown= PinInputPulldown ) 

Deprecated: use PinInputPullup and PinInputPulldown instead.

const ( PA00Pin= iota PA01 PA02 PA03 PA04 PA05 PA06 PA07 PA08 PA09 PA10 PA11 PA12 PA13 PA14 PA15 PA16 PA17 PA18 PA19 PA20 PA21 PA22 PA23 PA24 PA25 PA26 PA27 PA28 PA29 ) 
const ( PB00Pin= iota + 32 PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10 PB11 _ _ _ _ PB16 PB17 PB18 PB19 PB20 PB21 PB22 PB23 ) 
const ( PC00Pin= iota + 64 PC01 PC02 PC03 PC04 PC05 PC06 PC07 PC08 PC09 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 ) 
const ( PD00Pin= iota + 96 PD01 PD02 PD03 PD04 PD05 PD06 PD07 PD08 PD09 PD10 PD11 PD12 PD13 PD14 PD15 ) 
const ( PE00Pin= iota + 128 PE01 PE02 PE03 PE04 PE05 PE06 PE07 PE08 PE09 PE10 PE11 PE12 PE13 PE14 PE15 PE16 PE17 PE18 PE19 PE20 PE21 PE22 PE23 PE24 PE25 PE26 PE27 PE28 ) 
const ( // ParityNone means to not use any parity checking. This is // the most common setting. ParityNoneUARTParity= iota  // ParityEven means to expect that the total number of 1 bits sent // should be an even number. ParityEven  // ParityOdd means to expect that the total number of 1 bits sent // should be an odd number. ParityOdd ) 

Variables

var ( TeensyUART1= UART0 TeensyUART2= UART1 TeensyUART3= UART2 TeensyUART4= UART3 TeensyUART5= UART4 ) 
var DefaultUART = UART0 
var ( ErrTimeoutRNG= errors.New("machine: RNG Timeout") ErrClockRNG= errors.New("machine: RNG Clock Error") ErrSeedRNG= errors.New("machine: RNG Seed Error") ErrInvalidInputPin= errors.New("machine: invalid input pin") ErrInvalidOutputPin= errors.New("machine: invalid output pin") ErrInvalidClockPin= errors.New("machine: invalid clock pin") ErrInvalidDataPin= errors.New("machine: invalid data pin") ErrNoPinChangeChannel= errors.New("machine: no channel available for pin interrupt") ) 
var ( ErrNotImplemented= errors.New("device has not been implemented") ErrNotConfigured= errors.New("device has not been configured") ) 
var ( UART0= &_UART0 UART1= &_UART1 UART2= &_UART2 UART3= &_UART3 UART4= &_UART4 _UART0= UART{UART_Type: nxp.UART0, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART0, DefaultRX: defaultUART0RX, DefaultTX: defaultUART0TX} _UART1= UART{UART_Type: nxp.UART1, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART1, DefaultRX: defaultUART1RX, DefaultTX: defaultUART1TX} _UART2= UART{UART_Type: nxp.UART2, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART2, DefaultRX: defaultUART2RX, DefaultTX: defaultUART2TX} _UART3= UART{UART_Type: nxp.UART3, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART3, DefaultRX: defaultUART3RX, DefaultTX: defaultUART3TX} _UART4= UART{UART_Type: nxp.UART4, SCGC: &nxp.SIM.SCGC1, SCGCMask: nxp.SIM_SCGC1_UART4, DefaultRX: defaultUART4RX, DefaultTX: defaultUART4TX} ) 
var ( ErrPWMPeriodTooLong = errors.New("pwm: period too long") ) 
var Serial = DefaultUART 

Serial is implemented via the default (usually the first) UART on the chip.

func CPUFrequency

func CPUFrequency() uint32 

CPUFrequency returns the frequency of the ARM core clock (180MHz)

func CPUReset

func CPUReset() 

CPUReset performs a hard system reset.

func ClockFrequency

func ClockFrequency() uint32 

ClockFrequency returns the frequency of the external oscillator (16MHz)

func InitSerial

func InitSerial() 

func NewRingBuffer

func NewRingBuffer() *RingBuffer 

NewRingBuffer returns a new ring buffer.

func PollUART

func PollUART(u *UART) 

PollUART manually checks a UART status and calls the ISR. This should only be called by runtime.abort.

func PutcharUART

func PutcharUART(u *UART, c byte) 

PutcharUART writes a byte to the UART synchronously, without using interrupts or calling the scheduler

type ADC

type ADC struct { Pin Pin } 

type ADCConfig

type ADCConfig struct { Referenceuint32// analog reference voltage (AREF) in millivolts Resolutionuint32// number of bits for a single conversion (e.g., 8, 10, 12) Samplesuint32// number of samples for a single conversion (e.g., 4, 8, 16, 32) SampleTimeuint32// sample time, in microseconds (µs) } 

ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.

type FastPin

type FastPin struct { PDOR*volatile.BitRegister PSOR*volatile.BitRegister PCOR*volatile.BitRegister PTOR*volatile.BitRegister PDIR*volatile.BitRegister PDDR*volatile.BitRegister } 

func (FastPin) Clear

func (p FastPin) Clear() 

func (FastPin) Read

func (p FastPin) Read() bool 

func (FastPin) Set

func (p FastPin) Set() 

func (FastPin) Toggle

func (p FastPin) Toggle() 

func (FastPin) Write

func (p FastPin) Write(v bool) 

type NullSerial

type NullSerial struct { } 

NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.

func (NullSerial) Buffered

func (ns NullSerial) Buffered() int 

Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.

func (NullSerial) Configure

func (ns NullSerial) Configure(config UARTConfig) error 

Configure does nothing: the null serial has no configuration.

func (NullSerial) ReadByte

func (ns NullSerial) ReadByte() (byte, error) 

ReadByte always returns an error because there aren’t any bytes to read.

func (NullSerial) Write

func (ns NullSerial) Write(p []byte) (n int, err error) 

Write is a no-op: none of the data is being written and it will not return an error.

func (NullSerial) WriteByte

func (ns NullSerial) WriteByte(b byte) error 

WriteByte is a no-op: the null serial doesn’t write bytes.

type PDMConfig

type PDMConfig struct { Stereobool DINPin CLKPin } 

type PWMConfig

type PWMConfig struct { // PWM period in nanosecond. Leaving this zero will pick a reasonable period // value for use with LEDs. // If you want to configure a frequency instead of a period, you can use the // following formula to calculate a period from a frequency: // // period = 1e9 / frequency // Period uint64 } 

PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.

type Pin

type Pin uint8 

Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.

func (Pin) Configure

func (p Pin) Configure(config PinConfig) 

Configure this pin with the given configuration.

func (Pin) Control

func (p Pin) Control() *volatile.Register32 

func (Pin) Fast

func (p Pin) Fast() FastPin 

func (Pin) Get

func (p Pin) Get() bool 

Get returns the current value of a GPIO pin.

func (Pin) High

func (p Pin) High() 

High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.

func (Pin) Low

func (p Pin) Low() 

Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.

func (Pin) Set

func (p Pin) Set(value bool) 

Set changes the value of the GPIO pin. The pin must be configured as output.

type PinConfig

type PinConfig struct { Mode PinMode } 

type PinMode

type PinMode uint8 

PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.

type RingBuffer

type RingBuffer struct { rxbuffer[bufferSize]volatile.Register8 headvolatile.Register8 tailvolatile.Register8 } 

RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php

func (*RingBuffer) Clear

func (rb *RingBuffer) Clear() 

Clear resets the head and tail pointer to zero.

func (*RingBuffer) Get

func (rb *RingBuffer) Get() (byte, bool) 

Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.

func (*RingBuffer) Put

func (rb *RingBuffer) Put(val byte) bool 

Put stores a byte in the buffer. If the buffer is already full, the method will return false.

func (*RingBuffer) Used

func (rb *RingBuffer) Used() uint8 

Used returns how many bytes in buffer have been used.

type UART

type UART struct { *nxp.UART_Type SCGC*volatile.Register32 SCGCMaskuint32  DefaultRXPin DefaultTXPin  // state BufferRingBuffer// RX Buffer TXBufferRingBuffer Configuredbool Transmittingvolatile.Register8 Interruptinterrupt.Interrupt } 

func (*UART) Buffered

func (uart *UART) Buffered() int 

Buffered returns the number of bytes currently stored in the RX buffer.

func (*UART) Configure

func (u *UART) Configure(config UARTConfig) 

Configure the UART.

func (*UART) Disable

func (u *UART) Disable() 

func (*UART) Flush

func (u *UART) Flush() 

func (*UART) Read

func (uart *UART) Read(data []byte) (n int, err error) 

Read from the RX buffer.

func (*UART) ReadByte

func (uart *UART) ReadByte() (byte, error) 

ReadByte reads a single byte from the RX buffer. If there is no data in the buffer, returns an error.

func (*UART) Receive

func (uart *UART) Receive(data byte) 

Receive handles adding data to the UART’s data buffer. Usually called by the IRQ handler for a machine.

func (*UART) Write

func (uart *UART) Write(data []byte) (n int, err error) 

Write data over the UART’s Tx. This function blocks until the data is finished being sent.

func (*UART) WriteByte

func (uart *UART) WriteByte(c byte) error 

WriteByte writes a byte of data over the UART’s Tx. This function blocks until the data is finished being sent.

type UARTConfig

type UARTConfig struct { BaudRateuint32 TXPin RXPin RTSPin CTSPin } 

UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.

type UARTParity

type UARTParity uint8 

UARTParity is the parity setting to be used for UART communication.

Last modified April 17, 2024: Fix doc-gen and update docs (8a74a2b)