lorae5
Constants
const ( // We assume a LED is connected on PB5 LED= PB5// Default LED // Set the POWER_EN3V3 pin to high to turn // on the 3.3V power for all peripherals POWER_EN3V3= PA9 // Set the POWER_EN5V pin to high to turn // on the 5V bus power for all peripherals POWER_EN5V= PB10 )
const ( SPI0_NSS_PIN= PA4 SPI0_SCK_PIN= PA5 SPI0_SDO_PIN= PA6 SPI0_SDI_PIN= PA7 )
SubGhz (SPI3)
const ( // MCU USART1 UART1_TX_PIN= PB6 UART1_RX_PIN= PB7 // MCU USART2 UART2_TX_PIN= PA2 UART2_RX_PIN= PA3 // DEFAULT USART UART_TX_PIN= UART1_TX_PIN UART_RX_PIN= UART1_RX_PIN // I2C2 pins I2C2_SCL_PIN= PB15 I2C2_SDA_PIN= PA15 I2C2_ALT_FUNC= 4 // I2C0 alias for I2C2 I2C0_SDA_PIN= I2C2_SDA_PIN I2C0_SCL_PIN= I2C2_SCL_PIN )
UARTS
const ( TWI_FREQ_100KHZ= 100000 TWI_FREQ_400KHZ= 400000 )
TWI_FREQ is the I2C bus speed. Normally either 100 kHz, or 400 kHz for high-speed bus.
Deprecated: use 100 * machine.KHz or 400 * machine.KHz instead.
const ( // I2CReceive indicates target has received a message from the controller. I2CReceiveI2CTargetEvent= iota // I2CRequest indicates the controller is expecting a message from the target. I2CRequest // I2CFinish indicates the controller has ended the transaction. // // I2C controllers can chain multiple receive/request messages without // relinquishing the bus by doing 'restarts'. I2CFinish indicates the // bus has been relinquished by an I2C 'stop'. I2CFinish )
const ( // I2CModeController represents an I2C peripheral in controller mode. I2CModeControllerI2CMode= iota // I2CModeTarget represents an I2C peripheral in target mode. I2CModeTarget )
const Device = deviceName
Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.
The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.
const ( KHz= 1000 MHz= 1000_000 GHz= 1000_000_000 )
Generic constants.
const NoPin = Pin(0xff)
NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).
const ( PinRisingPinChange= 1 << iota PinFalling PinToggle= PinRising | PinFalling )
const ( MAX_NBYTE_SIZE= 255 // 100ms delay = 100e6ns / 16ns // In runtime_stm32_timers.go, tick is fixed at 16ns per tick TIMEOUT_TICKS= 100e6 / 16 I2C_NO_STARTSTOP= 0x0 I2C_GENERATE_START_WRITE= 0x80000000 | stm32.I2C_CR2_START I2C_GENERATE_START_READ= 0x80000000 | stm32.I2C_CR2_START | stm32.I2C_CR2_RD_WRN I2C_GENERATE_STOP= 0x80000000 | stm32.I2C_CR2_STOP )
const ( // WatchdogMaxTimeout in milliseconds (32.768s) // // Timeout is based on 12-bit counter with /256 divider on // 32.768kHz clock. See 21.3.3 of RM0090 for table. WatchdogMaxTimeout = ((0xfff + 1) * 256 * 1024) / 32768 )
const ( // Mode Flag PinOutputPinMode= 0 PinInputPinMode= PinInputFloating PinInputFloatingPinMode= 1 PinInputPulldownPinMode= 2 PinInputPullupPinMode= 3 // for UART PinModeUARTTXPinMode= 4 PinModeUARTRXPinMode= 5 // for I2C PinModeI2CSCLPinMode= 6 PinModeI2CSDAPinMode= 7 // for SPI PinModeSPICLKPinMode= 8 PinModeSPISDOPinMode= 9 PinModeSPISDIPinMode= 10 // for analog/ADC PinInputAnalogPinMode= 11 // for PWM PinModePWMOutputPinMode= 12 )
const RNG_MAX_READ_RETRIES = 1000
const PWM_MODE1 = 0x6
const ( AF0_SYSTEM= 0 AF1_TIM1_2_LPTIM1= 1 AF2_TIM1_2= 2 AF3_SPIS2_TIM1_LPTIM3= 3 AF4_I2C1_2_3= 4 AF5_SPI1_SPI2S2= 5 AF6_RF= 6 AF7_USART1_2= 7 AF8_LPUART1= 8 AF12_COMP1_2_TIM1= 12 AF13_DEBUG= 13 AF14_TIM2_16_17_LPTIM2= 14 AF15_EVENTOUT= 15 )
const ( SYSCLK= 48e6 APB1_TIM_FREQ= SYSCLK APB2_TIM_FREQ= SYSCLK )
const ( PA0= portA + 0 PA1= portA + 1 PA2= portA + 2 PA3= portA + 3 PA4= portA + 4 PA5= portA + 5 PA6= portA + 6 PA7= portA + 7 PA8= portA + 8 PA9= portA + 9 PA10= portA + 10 PA11= portA + 11 PA12= portA + 12 PA13= portA + 13 PA14= portA + 14 PA15= portA + 15 PB0= portB + 0 PB1= portB + 1 PB2= portB + 2 PB3= portB + 3 PB4= portB + 4 PB5= portB + 5 PB6= portB + 6 PB7= portB + 7 PB8= portB + 8 PB9= portB + 9 PB10= portB + 10 PB11= portB + 11 PB12= portB + 12 PB13= portB + 13 PB14= portB + 14 PB15= portB + 15 PC0= portC + 0 PC1= portC + 1 PC2= portC + 2 PC3= portC + 3 PC4= portC + 4 PC5= portC + 5 PC6= portC + 6 PC7= portC + 7 PC8= portC + 8 PC9= portC + 9 PC10= portC + 10 PC11= portC + 11 PC12= portC + 12 PC13= portC + 13 PC14= portC + 14 PC15= portC + 15 PH3= portH + 3 )
const ( ARR_MAX= 0x10000 PSC_MAX= 0x10000 )
const ( Mode0= 0 Mode1= 1 Mode2= 2 Mode3= 3 )
SPI phase and polarity configs CPOL and CPHA
const ( // ParityNone means to not use any parity checking. This is // the most common setting. ParityNoneUARTParity= iota // ParityEven means to expect that the total number of 1 bits sent // should be an even number. ParityEven // ParityOdd means to expect that the total number of 1 bits sent // should be an odd number. ParityOdd )
Variables
var ( // Console UART UART0= &_UART0 _UART0= UART{ Buffer:NewRingBuffer(), Bus:stm32.USART1, TxAltFuncSelector:AF7_USART1_2, RxAltFuncSelector:AF7_USART1_2, } DefaultUART= UART0 // Since we treat UART1 as zero, let's also call it by the real name UART1= UART0 // UART2 UART2= &_UART2 _UART2= UART{ Buffer:NewRingBuffer(), Bus:stm32.USART2, TxAltFuncSelector:AF7_USART1_2, RxAltFuncSelector:AF7_USART1_2, } // I2C Busses I2C2= &I2C{ Bus:stm32.I2C2, AltFuncSelector:I2C2_ALT_FUNC, } // Set "default" I2C bus to I2C2 I2C0= I2C2 // SPI SPI3= &SPI{ Bus: stm32.SPI3, } )
var ( ErrTimeoutRNG= errors.New("machine: RNG Timeout") ErrClockRNG= errors.New("machine: RNG Clock Error") ErrSeedRNG= errors.New("machine: RNG Seed Error") ErrInvalidInputPin= errors.New("machine: invalid input pin") ErrInvalidOutputPin= errors.New("machine: invalid output pin") ErrInvalidClockPin= errors.New("machine: invalid clock pin") ErrInvalidDataPin= errors.New("machine: invalid data pin") ErrNoPinChangeChannel= errors.New("machine: no channel available for pin interrupt") )
var Flash flashBlockDevice
var ( Watchdog = &watchdogImpl{} )
var ( TIM1= TIM{ EnableRegister:&stm32.RCC.APB2ENR, EnableFlag:stm32.RCC_APB2ENR_TIM1EN, Device:stm32.TIM1, Channels: [4]TimerChannel{ TimerChannel{Pins: []PinFunction{{PA8, AF1_TIM1_2_LPTIM1}}}, TimerChannel{Pins: []PinFunction{{PA9, AF1_TIM1_2_LPTIM1}}}, TimerChannel{Pins: []PinFunction{{PA10, AF1_TIM1_2_LPTIM1}}}, TimerChannel{Pins: []PinFunction{{PA11, AF1_TIM1_2_LPTIM1}}}, }, busFreq:APB2_TIM_FREQ, } TIM2= TIM{ EnableRegister:&stm32.RCC.APB1ENR1, EnableFlag:stm32.RCC_APB1ENR1_TIM2EN, Device:stm32.TIM2, Channels: [4]TimerChannel{ TimerChannel{Pins: []PinFunction{{PA0, AF1_TIM1_2_LPTIM1}, {PA5, AF1_TIM1_2_LPTIM1}, {PA15, AF1_TIM1_2_LPTIM1}}}, TimerChannel{Pins: []PinFunction{{PA1, AF1_TIM1_2_LPTIM1}, {PB3, AF1_TIM1_2_LPTIM1}}}, TimerChannel{Pins: []PinFunction{{PA2, AF1_TIM1_2_LPTIM1}, {PB10, AF1_TIM1_2_LPTIM1}}}, TimerChannel{Pins: []PinFunction{{PA3, AF1_TIM1_2_LPTIM1}, {PB11, AF1_TIM1_2_LPTIM1}}}, }, busFreq:APB1_TIM_FREQ, } TIM16= TIM{ EnableRegister:&stm32.RCC.APB2ENR, EnableFlag:stm32.RCC_APB2ENR_TIM16EN, Device:stm32.TIM16, Channels: [4]TimerChannel{ TimerChannel{Pins: []PinFunction{{PA6, AF14_TIM2_16_17_LPTIM2}}}, TimerChannel{Pins: []PinFunction{}}, TimerChannel{Pins: []PinFunction{}}, TimerChannel{Pins: []PinFunction{}}, }, busFreq:APB2_TIM_FREQ, } TIM17= TIM{ EnableRegister:&stm32.RCC.APB2ENR, EnableFlag:stm32.RCC_APB2ENR_TIM17EN, Device:stm32.TIM17, Channels: [4]TimerChannel{ TimerChannel{Pins: []PinFunction{{PA7, AF1_TIM1_2_LPTIM1}, {PB9, AF1_TIM1_2_LPTIM1}}}, TimerChannel{Pins: []PinFunction{}}, TimerChannel{Pins: []PinFunction{}}, TimerChannel{Pins: []PinFunction{}}, }, busFreq:APB2_TIM_FREQ, } )
var ( ErrPWMPeriodTooLong = errors.New("pwm: period too long") )
var Serial = DefaultUART
Serial is implemented via the default (usually the first) UART on the chip.
var ( ErrTxInvalidSliceSize= errors.New("SPI write and read slices must be same size") errSPIInvalidMachineConfig= errors.New("SPI port was not configured properly by the machine") )
func CPUFrequency
func CPUFrequency() uint32
func CPUReset
func CPUReset()
CPUReset performs a hard system reset.
func DeviceID
func DeviceID() []byte
DeviceID returns an identifier that is unique within a particular chipset.
The identity is one burnt into the MCU itself.
The length of the device ID for STM32 is 12 bytes (96 bits).
func FlashDataEnd
func FlashDataEnd() uintptr
Return the end of the writable flash area. Usually this is the address one past the end of the on-chip flash.
func FlashDataStart
func FlashDataStart() uintptr
Return the start of the writable flash area, aligned on a page boundary. This is usually just after the program and static data.
func GetRNG
func GetRNG() (uint32, error)
GetRNG returns 32 bits of cryptographically secure random data
func InitSerial
func InitSerial()
func NewRingBuffer
func NewRingBuffer() *RingBuffer
NewRingBuffer returns a new ring buffer.
type ADC
type ADC struct { Pin Pin }
type ADCConfig
type ADCConfig struct { Referenceuint32// analog reference voltage (AREF) in millivolts Resolutionuint32// number of bits for a single conversion (e.g., 8, 10, 12) Samplesuint32// number of samples for a single conversion (e.g., 4, 8, 16, 32) SampleTimeuint32// sample time, in microseconds (µs) }
ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.
type BlockDevice
type BlockDevice interface { // ReadAt reads the given number of bytes from the block device. io.ReaderAt // WriteAt writes the given number of bytes to the block device. io.WriterAt // Size returns the number of bytes in this block device. Size() int64 // WriteBlockSize returns the block size in which data can be written to // memory. It can be used by a client to optimize writes, non-aligned writes // should always work correctly. WriteBlockSize() int64 // EraseBlockSize returns the smallest erasable area on this particular chip // in bytes. This is used for the block size in EraseBlocks. // It must be a power of two, and may be as small as 1. A typical size is 4096. EraseBlockSize() int64 // EraseBlocks erases the given number of blocks. An implementation may // transparently coalesce ranges of blocks into larger bundles if the chip // supports this. The start and len parameters are in block numbers, use // EraseBlockSize to map addresses to blocks. EraseBlocks(start, len int64) error }
BlockDevice is the raw device that is meant to store flash data.
type ChannelCallback
type ChannelCallback func(channel uint8)
type I2C
type I2C struct { Bus*stm32.I2C_Type AltFuncSelectoruint8 }
func (*I2C) Configure
func (i2c *I2C) Configure(config I2CConfig) error
func (*I2C) ReadRegister
func (i2c *I2C) ReadRegister(address uint8, register uint8, data []byte) error
ReadRegister transmits the register, restarts the connection as a read operation, and reads the response.
Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily read such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.
func (*I2C) SetBaudRate
func (i2c *I2C) SetBaudRate(br uint32) error
SetBaudRate sets the communication speed for I2C.
func (*I2C) Tx
func (i2c *I2C) Tx(addr uint16, w, r []byte) error
func (*I2C) WriteRegister
func (i2c *I2C) WriteRegister(address uint8, register uint8, data []byte) error
WriteRegister transmits first the register and then the data to the peripheral device.
Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily write to such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.
type I2CConfig
type I2CConfig struct { Frequencyuint32 SCLPin SDAPin }
I2CConfig is used to store config info for I2C.
type I2CMode
type I2CMode int
I2CMode determines if an I2C peripheral is in Controller or Target mode.
type I2CTargetEvent
type I2CTargetEvent uint8
I2CTargetEvent reflects events on the I2C bus
type NullSerial
type NullSerial struct { }
NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.
func (NullSerial) Buffered
func (ns NullSerial) Buffered() int
Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.
func (NullSerial) Configure
func (ns NullSerial) Configure(config UARTConfig) error
Configure does nothing: the null serial has no configuration.
func (NullSerial) ReadByte
func (ns NullSerial) ReadByte() (byte, error)
ReadByte always returns an error because there aren’t any bytes to read.
func (NullSerial) Write
func (ns NullSerial) Write(p []byte) (n int, err error)
Write is a no-op: none of the data is being written and it will not return an error.
func (NullSerial) WriteByte
func (ns NullSerial) WriteByte(b byte) error
WriteByte is a no-op: the null serial doesn’t write bytes.
type PDMConfig
type PDMConfig struct { Stereobool DINPin CLKPin }
type PWMConfig
type PWMConfig struct { // PWM period in nanosecond. Leaving this zero will pick a reasonable period // value for use with LEDs. // If you want to configure a frequency instead of a period, you can use the // following formula to calculate a period from a frequency: // // period = 1e9 / frequency // Period uint64 }
PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.
type Pin
type Pin uint8
Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.
func (Pin) Configure
func (p Pin) Configure(config PinConfig)
Configure this pin with the given configuration
func (Pin) ConfigureAltFunc
func (p Pin) ConfigureAltFunc(config PinConfig, altFunc uint8)
Configure this pin with the given configuration including alternate
function mapping if necessary.
func (Pin) Get
func (p Pin) Get() bool
Get returns the current value of a GPIO pin when the pin is configured as an input or as an output.
func (Pin) High
func (p Pin) High()
High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.
func (Pin) Low
func (p Pin) Low()
Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.
func (Pin) PortMaskClear
func (p Pin) PortMaskClear() (*uint32, uint32)
PortMaskClear returns the register and mask to disable a given port. This can be used to implement bit-banged drivers.
func (Pin) PortMaskSet
func (p Pin) PortMaskSet() (*uint32, uint32)
PortMaskSet returns the register and mask to enable a given GPIO pin. This can be used to implement bit-banged drivers.
func (Pin) Set
func (p Pin) Set(high bool)
Set the pin to high or low. Warning: only use this on an output pin!
func (Pin) SetAltFunc
func (p Pin) SetAltFunc(af uint8)
SetAltFunc maps the given alternative function to the I/O pin
func (Pin) SetInterrupt
func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error
SetInterrupt sets an interrupt to be executed when a particular pin changes state. The pin should already be configured as an input, including a pull up or down if no external pull is provided.
This call will replace a previously set callback on this pin. You can pass a nil func to unset the pin change interrupt. If you do so, the change parameter is ignored and can be set to any value (such as 0).
type PinChange
type PinChange uint8
———- General pin operations ———-
type PinConfig
type PinConfig struct { Mode PinMode }
type PinFunction
type PinFunction struct { PinPin AltFuncuint8 }
type PinMode
type PinMode uint8
PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.
type RingBuffer
type RingBuffer struct { rxbuffer[bufferSize]volatile.Register8 headvolatile.Register8 tailvolatile.Register8 }
RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php
func (*RingBuffer) Clear
func (rb *RingBuffer) Clear()
Clear resets the head and tail pointer to zero.
func (*RingBuffer) Get
func (rb *RingBuffer) Get() (byte, bool)
Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.
func (*RingBuffer) Put
func (rb *RingBuffer) Put(val byte) bool
Put stores a byte in the buffer. If the buffer is already full, the method will return false.
func (*RingBuffer) Used
func (rb *RingBuffer) Used() uint8
Used returns how many bytes in buffer have been used.
type SPI
type SPI struct { Bus*stm32.SPI_Type AltFuncSelectoruint8 }
func (*SPI) Configure
func (spi *SPI) Configure(config SPIConfig) error
Configure is intended to setup the STM32 SPI1 interface.
func (*SPI) Transfer
func (spi *SPI) Transfer(w byte) (byte, error)
Transfer writes/reads a single byte using the SPI interface.
func (*SPI) Tx
func (spi *SPI) Tx(w, r []byte) error
Tx handles read/write operation for SPI interface. Since SPI is a synchronous write/read interface, there must always be the same number of bytes written as bytes read. The Tx method knows about this, and offers a few different ways of calling it.
This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer. Note that the tx and rx buffers must be the same size:
spi.Tx(tx, rx)
This form sends the tx buffer, ignoring the result. Useful for sending “commands” that return zeros until all the bytes in the command packet have been received:
spi.Tx(tx, nil)
This form sends zeros, putting the result into the rx buffer. Good for reading a “result packet”:
spi.Tx(nil, rx)
type SPIConfig
type SPIConfig struct { Frequencyuint32 SCKPin SDOPin SDIPin LSBFirstbool Modeuint8 }
SPIConfig is used to store config info for SPI.
type TIM
type TIM struct { EnableRegister*volatile.Register32 EnableFlaguint32 Device*stm32.TIM_Type Channels[4]TimerChannel UpInterruptinterrupt.Interrupt OCInterruptinterrupt.Interrupt wraparoundCallbackTimerCallback channelCallbacks[4]ChannelCallback busFrequint64 }
func (*TIM) Channel
func (t *TIM) Channel(pin Pin) (uint8, error)
Channel returns a PWM channel for the given pin.
func (*TIM) Configure
func (t *TIM) Configure(config PWMConfig) error
Configure enables and configures this PWM.
func (*TIM) Count
func (t *TIM) Count() uint32
func (*TIM) Set
func (t *TIM) Set(channel uint8, value uint32)
Set updates the channel value. This is used to control the channel duty cycle. For example, to set it to a 25% duty cycle, use:
t.Set(ch, t.Top() / 4)
ch.Set(0) will set the output to low and ch.Set(ch.Top()) will set the output to high, assuming the output isn’t inverted.
func (*TIM) SetInverting
func (t *TIM) SetInverting(channel uint8, inverting bool)
SetInverting sets whether to invert the output of this channel. Without inverting, a 25% duty cycle would mean the output is high for 25% of the time and low for the rest. Inverting flips the output as if a NOT gate was placed at the output, meaning that the output would be 25% low and 75% high with a duty cycle of 25%.
func (*TIM) SetMatchInterrupt
func (t *TIM) SetMatchInterrupt(channel uint8, callback ChannelCallback) error
Sets a callback to be called when a channel reaches it’s set-point.
For example, if t.Set(ch, t.Top() / 4)
is used then the callback will be called every quarter-period of the timer’s base Period.
func (*TIM) SetPeriod
func (t *TIM) SetPeriod(period uint64) error
SetPeriod updates the period of this PWM peripheral. To set a particular frequency, use the following formula:
period = 1e9 / frequency
If you use a period of 0, a period that works well for LEDs will be picked.
SetPeriod will not change the prescaler, but also won’t change the current value in any of the channels. This means that you may need to update the value for the particular channel.
Note that you cannot pick any arbitrary period after the PWM peripheral has been configured. If you want to switch between frequencies, pick the lowest frequency (longest period) once when calling Configure and adjust the frequency here as needed.
func (*TIM) SetWraparoundInterrupt
func (t *TIM) SetWraparoundInterrupt(callback TimerCallback) error
SetWraparoundInterrupt configures a callback to be called each time the timer ‘wraps-around’.
For example, if Configure(PWMConfig{Period:1000000})
is used, to set the timer period to 1ms, this callback will be called every 1ms.
func (*TIM) Top
func (t *TIM) Top() uint32
Top returns the current counter top, for use in duty cycle calculation. It will only change with a call to Configure or SetPeriod, otherwise it is constant.
The value returned here is hardware dependent. In general, it’s best to treat it as an opaque value that can be divided by some number and passed to pwm.Set (see pwm.Set for more information).
func (*TIM) Unset
func (t *TIM) Unset(channel uint8)
Unset disables a channel, including any configured interrupts.
type TimerCallback
type TimerCallback func()
type TimerChannel
type TimerChannel struct { Pins []PinFunction }
type UART
type UART struct { Buffer*RingBuffer Bus*stm32.USART_Type Interruptinterrupt.Interrupt TxAltFuncSelectoruint8 RxAltFuncSelectoruint8 // Registers specific to the chip rxReg*volatile.Register32 txReg*volatile.Register32 statusReg*volatile.Register32 txEmptyFlaguint32 }
UART representation
func (*UART) Buffered
func (uart *UART) Buffered() int
Buffered returns the number of bytes currently stored in the RX buffer.
func (*UART) Configure
func (uart *UART) Configure(config UARTConfig)
Configure the UART.
func (*UART) Read
func (uart *UART) Read(data []byte) (n int, err error)
Read from the RX buffer.
func (*UART) ReadByte
func (uart *UART) ReadByte() (byte, error)
ReadByte reads a single byte from the RX buffer. If there is no data in the buffer, returns an error.
func (*UART) Receive
func (uart *UART) Receive(data byte)
Receive handles adding data to the UART’s data buffer. Usually called by the IRQ handler for a machine.
func (*UART) SetBaudRate
func (uart *UART) SetBaudRate(br uint32)
SetBaudRate sets the communication speed for the UART. Defer to chip-specific routines for calculation
func (*UART) Write
func (uart *UART) Write(data []byte) (n int, err error)
Write data over the UART’s Tx. This function blocks until the data is finished being sent.
func (*UART) WriteByte
func (uart *UART) WriteByte(c byte) error
WriteByte writes a byte of data over the UART’s Tx. This function blocks until the data is finished being sent.
type UARTConfig
type UARTConfig struct { BaudRateuint32 TXPin RXPin RTSPin CTSPin }
UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.
type UARTParity
type UARTParity uint8
UARTParity is the parity setting to be used for UART communication.
type WatchdogConfig
type WatchdogConfig struct { // The timeout (in milliseconds) before the watchdog fires. // // If the requested timeout exceeds `MaxTimeout` it will be rounded // down. TimeoutMillis uint32 }
WatchdogConfig holds configuration for the watchdog timer.