gameboy-advance
Constants
const Device = deviceName Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.
The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.
const ( KHz= 1000 MHz= 1000_000 GHz= 1000_000_000 ) Generic constants.
const NoPin = Pin(0xff) NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).
const ( IRQ_VBLANK= gba.IRQ_VBLANK IRQ_HBLANK= gba.IRQ_HBLANK IRQ_VCOUNT= gba.IRQ_VCOUNT IRQ_TIMER0= gba.IRQ_TIMER0 IRQ_TIMER1= gba.IRQ_TIMER1 IRQ_TIMER2= gba.IRQ_TIMER2 IRQ_TIMER3= gba.IRQ_TIMER3 IRQ_COM= gba.IRQ_COM IRQ_DMA0= gba.IRQ_DMA0 IRQ_DMA1= gba.IRQ_DMA1 IRQ_DMA2= gba.IRQ_DMA2 IRQ_DMA3= gba.IRQ_DMA3 IRQ_KEYPAD= gba.IRQ_KEYPAD IRQ_GAMEPAK= gba.IRQ_GAMEPAK ) Interrupt numbers as used on the GameBoy Advance. Register them with runtime/interrupt.New.
Variables
var ( ErrTimeoutRNG= errors.New("machine: RNG Timeout") ErrClockRNG= errors.New("machine: RNG Clock Error") ErrSeedRNG= errors.New("machine: RNG Seed Error") ErrInvalidInputPin= errors.New("machine: invalid input pin") ErrInvalidOutputPin= errors.New("machine: invalid output pin") ErrInvalidClockPin= errors.New("machine: invalid clock pin") ErrInvalidDataPin= errors.New("machine: invalid data pin") ErrNoPinChangeChannel= errors.New("machine: no channel available for pin interrupt") ) var Display = DisplayMode3{(*[160][240]volatile.Register16)(unsafe.Pointer(uintptr(gba.MEM_VRAM)))} var ( ErrPWMPeriodTooLong = errors.New("pwm: period too long") ) var Serial = NullSerial{} Serial is a null device: writes to it are ignored.
func InitSerial
func InitSerial() func NewRingBuffer
func NewRingBuffer() *RingBuffer NewRingBuffer returns a new ring buffer.
type ADC
type ADC struct { Pin Pin } type ADCConfig
type ADCConfig struct { Referenceuint32// analog reference voltage (AREF) in millivolts Resolutionuint32// number of bits for a single conversion (e.g., 8, 10, 12) Samplesuint32// number of samples for a single conversion (e.g., 4, 8, 16, 32) SampleTimeuint32// sample time, in microseconds (µs) } ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.
type DisplayMode3
type DisplayMode3 struct { port *[160][240]volatile.Register16 } func (*DisplayMode3) Configure
func (d *DisplayMode3) Configure() func (*DisplayMode3) Display
func (d *DisplayMode3) Display() error func (*DisplayMode3) SetPixel
func (d *DisplayMode3) SetPixel(x, y int16, c color.RGBA) func (*DisplayMode3) Size
func (d *DisplayMode3) Size() (x, y int16) type NullSerial
type NullSerial struct { } NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.
func (NullSerial) Buffered
func (ns NullSerial) Buffered() int Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.
func (NullSerial) Configure
func (ns NullSerial) Configure(config UARTConfig) error Configure does nothing: the null serial has no configuration.
func (NullSerial) ReadByte
func (ns NullSerial) ReadByte() (byte, error) ReadByte always returns an error because there aren’t any bytes to read.
func (NullSerial) Write
func (ns NullSerial) Write(p []byte) (n int, err error) Write is a no-op: none of the data is being written and it will not return an error.
func (NullSerial) WriteByte
func (ns NullSerial) WriteByte(b byte) error WriteByte is a no-op: the null serial doesn’t write bytes.
type PDMConfig
type PDMConfig struct { Stereobool DINPin CLKPin } type PWMConfig
type PWMConfig struct { // PWM period in nanosecond. Leaving this zero will pick a reasonable period // value for use with LEDs. // If you want to configure a frequency instead of a period, you can use the // following formula to calculate a period from a frequency: // // period = 1e9 / frequency // Period uint64 } PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.
type Pin
type Pin uint8 Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.
func (Pin) High
func (p Pin) High() High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.
func (Pin) Low
func (p Pin) Low() Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.
func (Pin) Set
func (p Pin) Set(value bool) Set has not been implemented.
type PinConfig
type PinConfig struct { Mode PinMode } type PinMode
type PinMode uint8 PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.
type RingBuffer
type RingBuffer struct { rxbuffer[bufferSize]volatile.Register8 headvolatile.Register8 tailvolatile.Register8 } RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php
func (*RingBuffer) Clear
func (rb *RingBuffer) Clear() Clear resets the head and tail pointer to zero.
func (*RingBuffer) Get
func (rb *RingBuffer) Get() (byte, bool) Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.
func (*RingBuffer) Put
func (rb *RingBuffer) Put(val byte) bool Put stores a byte in the buffer. If the buffer is already full, the method will return false.
func (*RingBuffer) Used
func (rb *RingBuffer) Used() uint8 Used returns how many bytes in buffer have been used.
type UARTConfig
type UARTConfig struct { BaudRateuint32 TXPin RXPin RTSPin CTSPin } UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.