feather-m4-can

Constants

const ( D0= PB17// UART0 RX/PWM available D1= PB16// UART0 TX/PWM available D4= PA14// PWM available D5= PA16// PWM available D6= PA18// PWM available D7= PB03// neopixel power D8= PB02// built-in neopixel D9= PA19// PWM available D10= PA20// can be used for PWM or UART1 TX D11= PA21// can be used for PWM or UART1 RX D12= PA22// PWM available D13= PA23// PWM available D21= PA13// PWM available D22= PA12// PWM available D23= PB22// PWM available D24= PB23// PWM available D25= PA17// PWM available ) 

GPIO Pins

const ( A0= PA02// ADC/AIN[0] A1= PA05// ADC/AIN[2] A2= PB08// ADC/AIN[3] A3= PB09// ADC/AIN[4] A4= PA04// ADC/AIN[5] A5= PA06// ADC/AIN[10] ) 

Analog pins

const ( LED= D13 NEOPIXELS= D8 WS2812= D8 ) 
const ( USBCDC_DM_PIN= PA24 USBCDC_DP_PIN= PA25 ) 

USBCDC pins

const ( UART_TX_PIN= D1 UART_RX_PIN= D0 ) 
const ( UART2_TX_PIN= A4 UART2_RX_PIN= A5 ) 
const ( SDA_PIN= D22// SDA: SERCOM2/PAD[0] SCL_PIN= D21// SCL: SERCOM2/PAD[1] ) 

I2C pins

const ( SPI0_SCK_PIN= D25// SCK: SERCOM1/PAD[1] SPI0_SDO_PIN= D24// SDO: SERCOM1/PAD[3] SPI0_SDI_PIN= D23// SDI: SERCOM1/PAD[2] ) 

SPI pins

const ( CAN0_TX= PA22 CAN0_RX= PA23  CAN1_STANDBY= PB12 CAN1_TX= PB14 CAN1_RX= PB15 BOOST_EN= PB13// power control of CAN1's TCAN1051HGV (H: enable)  CAN_STANDBY= CAN1_STANDBY CAN_S= CAN1_STANDBY CAN_TX= CAN1_TX CAN_RX= CAN1_RX ) 

CAN pins

const ( TWI_FREQ_100KHZ= 100000 TWI_FREQ_400KHZ= 400000 ) 

TWI_FREQ is the I2C bus speed. Normally either 100 kHz, or 400 kHz for high-speed bus.

Deprecated: use 100 * machine.KHz or 400 * machine.KHz instead.

const ( // I2CReceive indicates target has received a message from the controller. I2CReceiveI2CTargetEvent= iota  // I2CRequest indicates the controller is expecting a message from the target. I2CRequest  // I2CFinish indicates the controller has ended the transaction. // // I2C controllers can chain multiple receive/request messages without // relinquishing the bus by doing 'restarts'. I2CFinish indicates the // bus has been relinquished by an I2C 'stop'. I2CFinish ) 
const ( // I2CModeController represents an I2C peripheral in controller mode. I2CModeControllerI2CMode= iota  // I2CModeTarget represents an I2C peripheral in target mode. I2CModeTarget ) 
const Device = deviceName 

Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.

The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.

const ( KHz= 1000 MHz= 1000_000 GHz= 1000_000_000 ) 

Generic constants.

const NoPin = Pin(0xff) 

NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).

const ( PinAnalogPinMode= 1 PinSERCOMPinMode= 2 PinSERCOMAltPinMode= 3 PinTimerPinMode= 4 PinTimerAltPinMode= 5 PinTCCPDECPinMode= 6 PinComPinMode= 7 PinSDHCPinMode= 8 PinI2SPinMode= 9 PinPCCPinMode= 10 PinGMACPinMode= 11 PinACCLKPinMode= 12 PinCCLPinMode= 13 PinDigitalPinMode= 14 PinInputPinMode= 15 PinInputPullupPinMode= 16 PinOutputPinMode= 17 PinTCCEPinMode= PinTimer PinTCCFPinMode= PinTimerAlt PinTCCGPinMode= PinTCCPDEC PinInputPulldownPinMode= 18 PinCANPinMode= 19 PinCAN0PinMode= PinSDHC PinCAN1PinMode= PinCom ) 
const ( PinRisingPinChange= sam.EIC_CONFIG_SENSE0_RISE PinFallingPinChange= sam.EIC_CONFIG_SENSE0_FALL PinTogglePinChange= sam.EIC_CONFIG_SENSE0_BOTH ) 

Pin change interrupt constants for SetInterrupt.

const ( PA00Pin= 0 PA01Pin= 1 PA02Pin= 2 PA03Pin= 3 PA04Pin= 4 PA05Pin= 5 PA06Pin= 6 PA07Pin= 7 PA08Pin= 8// peripherals: TCC0 channel 0, TCC1 channel 4, sercomI2CM0 SDA, sercomI2CM2 SDA PA09Pin= 9// peripherals: TCC0 channel 1, TCC1 channel 5, sercomI2CM0 SCL, sercomI2CM2 SCL PA10Pin= 10// peripherals: TCC0 channel 2, TCC1 channel 6 PA11Pin= 11// peripherals: TCC0 channel 3, TCC1 channel 7 PA12Pin= 12// peripherals: TCC0 channel 6, TCC1 channel 2, sercomI2CM2 SDA, sercomI2CM4 SDA PA13Pin= 13// peripherals: TCC0 channel 7, TCC1 channel 3, sercomI2CM2 SCL, sercomI2CM4 SCL PA14Pin= 14// peripherals: TCC2 channel 0, TCC1 channel 2 PA15Pin= 15// peripherals: TCC2 channel 1, TCC1 channel 3 PA16Pin= 16// peripherals: TCC1 channel 0, TCC0 channel 4, sercomI2CM1 SDA, sercomI2CM3 SDA PA17Pin= 17// peripherals: TCC1 channel 1, TCC0 channel 5, sercomI2CM1 SCL, sercomI2CM3 SCL PA18Pin= 18// peripherals: TCC1 channel 2, TCC0 channel 6 PA19Pin= 19// peripherals: TCC1 channel 3, TCC0 channel 7 PA20Pin= 20// peripherals: TCC1 channel 4, TCC0 channel 0 PA21Pin= 21// peripherals: TCC1 channel 5, TCC0 channel 1 PA22Pin= 22// peripherals: TCC1 channel 6, TCC0 channel 2, sercomI2CM3 SDA, sercomI2CM5 SDA PA23Pin= 23// peripherals: TCC1 channel 7, TCC0 channel 3, sercomI2CM3 SCL, sercomI2CM5 SCL PA24Pin= 24// peripherals: TCC2 channel 2 PA25Pin= 25// peripherals: TCC2 channel 3 PA26Pin= 26 PA27Pin= 27 PA28Pin= 28 PA29Pin= 29 PA30Pin= 30// peripherals: TCC2 channel 0 PA31Pin= 31// peripherals: TCC2 channel 1 PB00Pin= 32 PB01Pin= 33 PB02Pin= 34// peripherals: TCC2 channel 2 PB03Pin= 35// peripherals: TCC2 channel 3 PB04Pin= 36 PB05Pin= 37 PB06Pin= 38 PB07Pin= 39 PB08Pin= 40 PB09Pin= 41 PB10Pin= 42// peripherals: TCC0 channel 4, TCC1 channel 0 PB11Pin= 43// peripherals: TCC0 channel 5, TCC1 channel 1 PB12Pin= 44// peripherals: TCC3 channel 0, TCC0 channel 0 PB13Pin= 45// peripherals: TCC3 channel 1, TCC0 channel 1 PB14Pin= 46// peripherals: TCC4 channel 0, TCC0 channel 2 PB15Pin= 47// peripherals: TCC4 channel 1, TCC0 channel 3 PB16Pin= 48// peripherals: TCC3 channel 0, TCC0 channel 4 PB17Pin= 49// peripherals: TCC3 channel 1, TCC0 channel 5 PB18Pin= 50// peripherals: TCC1 channel 0 PB19Pin= 51// peripherals: TCC1 channel 1 PB20Pin= 52// peripherals: TCC1 channel 2 PB21Pin= 53// peripherals: TCC1 channel 3 PB22Pin= 54 PB23Pin= 55 PB24Pin= 56 PB25Pin= 57 PB26Pin= 58// peripherals: TCC1 channel 2 PB27Pin= 59// peripherals: TCC1 channel 3 PB28Pin= 60// peripherals: TCC1 channel 4 PB29Pin= 61// peripherals: TCC1 channel 5 PB30Pin= 62// peripherals: TCC4 channel 0, TCC0 channel 6 PB31Pin= 63// peripherals: TCC4 channel 1, TCC0 channel 7 PC00Pin= 64 PC01Pin= 65 PC02Pin= 66 PC03Pin= 67 PC04Pin= 68// peripherals: TCC0 channel 0 PC05Pin= 69// peripherals: TCC0 channel 1 PC06Pin= 70 PC07Pin= 71 PC08Pin= 72 PC09Pin= 73 PC10Pin= 74// peripherals: TCC0 channel 0, TCC1 channel 4 PC11Pin= 75// peripherals: TCC0 channel 1, TCC1 channel 5 PC12Pin= 76// peripherals: TCC0 channel 2, TCC1 channel 6 PC13Pin= 77// peripherals: TCC0 channel 3, TCC1 channel 7 PC14Pin= 78// peripherals: TCC0 channel 4, TCC1 channel 0 PC15Pin= 79// peripherals: TCC0 channel 5, TCC1 channel 1 PC16Pin= 80// peripherals: TCC0 channel 0 PC17Pin= 81// peripherals: TCC0 channel 1 PC18Pin= 82// peripherals: TCC0 channel 2 PC19Pin= 83// peripherals: TCC0 channel 3 PC20Pin= 84// peripherals: TCC0 channel 4 PC21Pin= 85// peripherals: TCC0 channel 5 PC22Pin= 86// peripherals: TCC0 channel 6 PC23Pin= 87// peripherals: TCC0 channel 7 PC24Pin= 88 PC25Pin= 89 PC26Pin= 90 PC27Pin= 91 PC28Pin= 92 PC29Pin= 93 PC30Pin= 94 PC31Pin= 95 PD00Pin= 96 PD01Pin= 97 PD02Pin= 98 PD03Pin= 99 PD04Pin= 100 PD05Pin= 101 PD06Pin= 102 PD07Pin= 103 PD08Pin= 104// peripherals: TCC0 channel 1, sercomI2CM6 SDA, sercomI2CM7 SDA PD09Pin= 105// peripherals: TCC0 channel 2, sercomI2CM6 SCL, sercomI2CM7 SCL PD10Pin= 106// peripherals: TCC0 channel 3 PD11Pin= 107// peripherals: TCC0 channel 4 PD12Pin= 108// peripherals: TCC0 channel 5 PD13Pin= 109// peripherals: TCC0 channel 6 PD14Pin= 110 PD15Pin= 111 PD16Pin= 112 PD17Pin= 113 PD18Pin= 114 PD19Pin= 115 PD20Pin= 116// peripherals: TCC1 channel 0 PD21Pin= 117// peripherals: TCC1 channel 1 PD22Pin= 118 PD23Pin= 119 PD24Pin= 120 PD25Pin= 121 PD26Pin= 122 PD27Pin= 123 PD28Pin= 124 PD29Pin= 125 PD30Pin= 126 PD31Pin= 127 ) 

Hardware pins

const ( // SERCOM_FREQ_REF is always reference frequency on SAMD51 regardless of CPU speed. SERCOM_FREQ_REF= 48000000 SERCOM_FREQ_REF_GCLK0= 120000000  // Default rise time in nanoseconds, based on 4.7K ohm pull up resistors riseTimeNanoseconds= 125  // wire bus states wireUnknownState= 0 wireIdleState= 1 wireOwnerState= 2 wireBusyState= 3  // wire commands wireCmdNoAction= 0 wireCmdRepeatStart= 1 wireCmdRead= 2 wireCmdStop= 3 ) 
const ( QSPI_SCK= PB10 QSPI_CS= PB11 QSPI_DATA0= PA08 QSPI_DATA1= PA09 QSPI_DATA2= PA10 QSPI_DATA3= PA11 ) 

The QSPI peripheral on ATSAMD51 is only available on the following pins

const ( // WatchdogMaxTimeout in milliseconds (16s) WatchdogMaxTimeout = (16384 * 1000) / 1024// CYC16384/1024kHz ) 
const ( // these are SAMD51 specific. usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos= 0 usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask= 0x3FFF  usb_DEVICE_PCKSIZE_SIZE_Pos= 28 usb_DEVICE_PCKSIZE_SIZE_Mask= 0x7  usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos= 14 usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Mask= 0x3FFF  NumberOfUSBEndpoints= 8 ) 
const HSRAM_SIZE = 0x00030000 
const ( CANRxFifoSize= 16 CANTxFifoSize= 16 CANEvFifoSize= 16 ) 
const ( CANTransferRate125kbpsCANTransferRate= 125000 CANTransferRate250kbpsCANTransferRate= 250000 CANTransferRate500kbpsCANTransferRate= 500000 CANTransferRate1000kbpsCANTransferRate= 1000000 CANTransferRate2000kbpsCANTransferRate= 2000000 CANTransferRate4000kbpsCANTransferRate= 4000000 ) 

CAN transfer rates for CANConfig

const ( Mode0= 0 Mode1= 1 Mode2= 2 Mode3= 3 ) 

SPI phase and polarity configs CPOL and CPHA

const ( // ParityNone means to not use any parity checking. This is // the most common setting. ParityNoneUARTParity= iota  // ParityEven means to expect that the total number of 1 bits sent // should be an even number. ParityEven  // ParityOdd means to expect that the total number of 1 bits sent // should be an odd number. ParityOdd ) 

Variables

var ( UART1= &sercomUSART5  UART2= &sercomUSART0 ) 
var ( I2C0 = sercomI2CM2 ) 

I2C on the Feather M4 CAN.

var SPI0 = sercomSPIM1 

SPI on the Feather M4 CAN.

var ( CAN0= CAN{ Bus: sam.CAN0, }  CAN1= CAN{ Bus: sam.CAN1, } ) 

CAN on the Feather M4 CAN.

var ( DefaultUART = UART1 ) 
var ( ErrTimeoutRNG= errors.New("machine: RNG Timeout") ErrClockRNG= errors.New("machine: RNG Clock Error") ErrSeedRNG= errors.New("machine: RNG Seed Error") ErrInvalidInputPin= errors.New("machine: invalid input pin") ErrInvalidOutputPin= errors.New("machine: invalid output pin") ErrInvalidClockPin= errors.New("machine: invalid clock pin") ErrInvalidDataPin= errors.New("machine: invalid data pin") ErrNoPinChangeChannel= errors.New("machine: no channel available for pin interrupt") ) 
var ( DAC0= DAC{Channel: 0} DAC1= DAC{Channel: 1} ) 
var Flash flashBlockDevice 
var Watchdog = &watchdogImpl{} 

Watchdog provides access to the hardware watchdog available in the SAMD51.

var ( TCC0= (*TCC)(sam.TCC0) TCC1= (*TCC)(sam.TCC1) TCC2= (*TCC)(sam.TCC2) TCC3= (*TCC)(sam.TCC3) TCC4= (*TCC)(sam.TCC4) ) 

This chip has five TCC peripherals, which have PWM as one feature.

var CANRxFifo [2][(8 + 64) * CANRxFifoSize]byte 
var CANTxFifo [2][(8 + 64) * CANTxFifoSize]byte 
var CANEvFifo [2][(8) * CANEvFifoSize]byte 
var ( ErrPWMPeriodTooLong = errors.New("pwm: period too long") ) 
var Serial Serialer 

Serial is implemented via USB (USB-CDC).

var ( ErrTxInvalidSliceSize= errors.New("SPI write and read slices must be same size") errSPIInvalidMachineConfig= errors.New("SPI port was not configured properly by the machine") ) 
var ( USBDev= &USBDevice{} USBCDCSerialer ) 
var ( ErrUSBReadTimeout= errors.New("USB read timeout") ErrUSBBytesRead= errors.New("USB invalid number of bytes read") ErrUSBBytesWritten= errors.New("USB invalid number of bytes written") ) 

func AckUsbOutTransfer

func AckUsbOutTransfer(ep uint32) 

AckUsbOutTransfer is called to acknowledge the completion of a USB OUT transfer.

func CANDlcToLength

func CANDlcToLength(dlc byte, isFD bool) byte 

CANDlcToLength() converts a DLC value to its actual length.

func CANLengthToDlc

func CANLengthToDlc(length byte, isFD bool) byte 

CANLengthToDlc() converts its actual length to a DLC value.

func CPUFrequency

func CPUFrequency() uint32 

func CPUReset

func CPUReset() 

CPUReset performs a hard system reset.

func ConfigureUSBEndpoint

func ConfigureUSBEndpoint(desc descriptor.Descriptor, epSettings []usb.EndpointConfig, setup []usb.SetupConfig) 

func DeviceID

func DeviceID() []byte 

DeviceID returns an identifier that is unique within a particular chipset.

The identity is one burnt into the MCU itself, or the flash chip at time of manufacture.

It’s possible that two different vendors may allocate the same DeviceID, so callers should take this into account if needing to generate a globally unique id.

The length of the hardware ID is vendor-specific, but 8 bytes (64 bits) and 16 bytes (128 bits) are common.

func EnableCDC

func EnableCDC(txHandler func(), rxHandler func([]byte), setupHandler func(usb.Setup) bool) 

func EnterBootloader

func EnterBootloader() 

EnterBootloader should perform a system reset in preparation to switch to the bootloader to flash new firmware.

func FlashDataEnd

func FlashDataEnd() uintptr 

Return the end of the writable flash area. Usually this is the address one past the end of the on-chip flash.

func FlashDataStart

func FlashDataStart() uintptr 

Return the start of the writable flash area, aligned on a page boundary. This is usually just after the program and static data.

func GetRNG

func GetRNG() (uint32, error) 

GetRNG returns 32 bits of cryptographically secure random data

func InitADC

func InitADC() 

InitADC initializes the ADC.

func InitSerial

func InitSerial() 

func NewRingBuffer

func NewRingBuffer() *RingBuffer 

NewRingBuffer returns a new ring buffer.

func ReceiveUSBControlPacket

func ReceiveUSBControlPacket() ([cdcLineInfoSize]byte, error) 

func SendUSBInPacket

func SendUSBInPacket(ep uint32, data []byte) bool 

SendUSBInPacket sends a packet for USB (interrupt in / bulk in).

func SendZlp

func SendZlp() 

type ADC

type ADC struct { Pin Pin } 

func (ADC) Configure

func (a ADC) Configure(config ADCConfig) 

Configure configures a ADCPin to be able to be used to read data.

func (ADC) Get

func (a ADC) Get() uint16 

Get returns the current value of a ADC pin, in the range 0..0xffff.

type ADCConfig

type ADCConfig struct { Referenceuint32// analog reference voltage (AREF) in millivolts Resolutionuint32// number of bits for a single conversion (e.g., 8, 10, 12) Samplesuint32// number of samples for a single conversion (e.g., 4, 8, 16, 32) SampleTimeuint32// sample time, in microseconds (µs) } 

ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.

type BlockDevice

type BlockDevice interface { // ReadAt reads the given number of bytes from the block device. io.ReaderAt  // WriteAt writes the given number of bytes to the block device. io.WriterAt  // Size returns the number of bytes in this block device. Size() int64  // WriteBlockSize returns the block size in which data can be written to // memory. It can be used by a client to optimize writes, non-aligned writes // should always work correctly. WriteBlockSize() int64  // EraseBlockSize returns the smallest erasable area on this particular chip // in bytes. This is used for the block size in EraseBlocks. // It must be a power of two, and may be as small as 1. A typical size is 4096. EraseBlockSize() int64  // EraseBlocks erases the given number of blocks. An implementation may // transparently coalesce ranges of blocks into larger bundles if the chip // supports this. The start and len parameters are in block numbers, use // EraseBlockSize to map addresses to blocks. EraseBlocks(start, len int64) error } 

BlockDevice is the raw device that is meant to store flash data.

type CAN

type CAN struct { Bus *sam.CAN_Type } 

func (*CAN) Configure

func (can *CAN) Configure(config CANConfig) error 

Configure this CAN peripheral with the given configuration.

func (*CAN) Rx

func (can *CAN) Rx() (id uint32, dlc byte, data []byte, isFd, isExtendedID bool) 

Rx receives a CAN frame. It is easier to use than RxRaw, but not as flexible.

func (*CAN) RxFifoIsEmpty

func (can *CAN) RxFifoIsEmpty() bool 

RxFifoIsEmpty returns whether RxFifo is empty or not.

func (*CAN) RxFifoIsFull

func (can *CAN) RxFifoIsFull() bool 

RxFifoIsFull returns whether RxFifo is full or not.

func (*CAN) RxFifoSize

func (can *CAN) RxFifoSize() int 

RxFifoSize returns the number of CAN Frames currently stored in the RXFifo.

func (*CAN) RxRaw

func (can *CAN) RxRaw(e *CANRxBufferElement) 

RxRaw copies the received CAN frame to CANRxBufferElement.

func (*CAN) SetInterrupt

func (can *CAN) SetInterrupt(ie uint32, callback func(*CAN)) error 

SetInterrupt sets an interrupt to be executed when a particular CAN state.

This call will replace a previously set callback. You can pass a nil func to unset the CAN interrupt. If you do so, the change parameter is ignored and can be set to any value (such as 0).

func (*CAN) Tx

func (can *CAN) Tx(id uint32, data []byte, isFD, isExtendedID bool) 

The Tx transmits CAN frames. It is easier to use than TxRaw, but not as flexible.

func (*CAN) TxFifoFreeLevel

func (can *CAN) TxFifoFreeLevel() int 

TxFifoFreeLevel returns how many messages can still be set in the TxFifo.

func (*CAN) TxFifoIsFull

func (can *CAN) TxFifoIsFull() bool 

TxFifoIsFull returns whether TxFifo is full or not.

func (*CAN) TxRaw

func (can *CAN) TxRaw(e *CANTxBufferElement) 

TxRaw sends a CAN Frame according to CANTxBufferElement.

type CANConfig

type CANConfig struct { TransferRateCANTransferRate TransferRateFDCANTransferRate TxPin RxPin StandbyPin } 

CANConfig holds CAN configuration parameters. Tx and Rx need to be specified with some pins. When the Standby Pin is specified, configure it as an output pin and output Low in Configure(). If this operation is not necessary, specify NoPin.

type CANRxBufferElement

type CANRxBufferElement struct { ESIbool XTDbool RTRbool IDuint32 ANMFbool FIDXuint8 FDFbool BRSbool DLCuint8 RXTSuint16 DB[64]uint8 } 

CANRxBufferElement is a struct that corresponds to the same5x Rx Buffer and FIFO Element.

func (CANRxBufferElement) Data

func (e CANRxBufferElement) Data() []byte 

Data returns the received data as a slice of the size according to dlc.

func (CANRxBufferElement) Length

func (e CANRxBufferElement) Length() byte 

Length returns its actual length.

type CANTransferRate

type CANTransferRate uint32 

type CANTxBufferElement

type CANTxBufferElement struct { ESIbool XTDbool RTRbool IDuint32 MMuint8 EFCbool FDFbool BRSbool DLCuint8 DB[64]uint8 } 

CANTxBufferElement is a struct that corresponds to the same5x’ Tx Buffer Element.

type DAC

type DAC struct { Channel uint8 } 

DAC on the SAMD51.

func (DAC) Configure

func (dac DAC) Configure(config DACConfig) 

Configure the DAC. output pin must already be configured.

func (DAC) Set

func (dac DAC) Set(value uint16) error 

Set writes a single 16-bit value to the DAC. Since the ATSAMD51 only has a 12-bit DAC, the passed-in value will be scaled down.

type DACConfig

type DACConfig struct { } 

DACConfig placeholder for future expansion.

type I2C

type I2C struct { Bus*sam.SERCOM_I2CM_Type SERCOMuint8 } 

I2C on the SAMD51.

func (*I2C) Configure

func (i2c *I2C) Configure(config I2CConfig) error 

Configure is intended to setup the I2C interface.

func (*I2C) ReadRegister

func (i2c *I2C) ReadRegister(address uint8, register uint8, data []byte) error 

ReadRegister transmits the register, restarts the connection as a read operation, and reads the response.

Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily read such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.

func (*I2C) SetBaudRate

func (i2c *I2C) SetBaudRate(br uint32) error 

SetBaudRate sets the communication speed for I2C.

func (*I2C) Tx

func (i2c *I2C) Tx(addr uint16, w, r []byte) error 

Tx does a single I2C transaction at the specified address. It clocks out the given address, writes the bytes in w, reads back len(r) bytes and stores them in r, and generates a stop condition on the bus.

func (*I2C) WriteByte

func (i2c *I2C) WriteByte(data byte) error 

WriteByte writes a single byte to the I2C bus.

func (*I2C) WriteRegister

func (i2c *I2C) WriteRegister(address uint8, register uint8, data []byte) error 

WriteRegister transmits first the register and then the data to the peripheral device.

Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily write to such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.

type I2CConfig

type I2CConfig struct { Frequencyuint32 SCLPin SDAPin } 

I2CConfig is used to store config info for I2C.

type I2CMode

type I2CMode int 

I2CMode determines if an I2C peripheral is in Controller or Target mode.

type I2CTargetEvent

type I2CTargetEvent uint8 

I2CTargetEvent reflects events on the I2C bus

type NullSerial

type NullSerial struct { } 

NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.

func (NullSerial) Buffered

func (ns NullSerial) Buffered() int 

Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.

func (NullSerial) Configure

func (ns NullSerial) Configure(config UARTConfig) error 

Configure does nothing: the null serial has no configuration.

func (NullSerial) ReadByte

func (ns NullSerial) ReadByte() (byte, error) 

ReadByte always returns an error because there aren’t any bytes to read.

func (NullSerial) Write

func (ns NullSerial) Write(p []byte) (n int, err error) 

Write is a no-op: none of the data is being written and it will not return an error.

func (NullSerial) WriteByte

func (ns NullSerial) WriteByte(b byte) error 

WriteByte is a no-op: the null serial doesn’t write bytes.

type PDMConfig

type PDMConfig struct { Stereobool DINPin CLKPin } 

type PWMConfig

type PWMConfig struct { // PWM period in nanosecond. Leaving this zero will pick a reasonable period // value for use with LEDs. // If you want to configure a frequency instead of a period, you can use the // following formula to calculate a period from a frequency: // // period = 1e9 / frequency // Period uint64 } 

PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.

type Pin

type Pin uint8 

Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.

func (Pin) Configure

func (p Pin) Configure(config PinConfig) 

Configure this pin with the given configuration.

func (Pin) Get

func (p Pin) Get() bool 

Get returns the current value of a GPIO pin when configured as an input or as an output.

func (Pin) High

func (p Pin) High() 

High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.

func (Pin) Low

func (p Pin) Low() 

Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.

func (Pin) PortMaskClear

func (p Pin) PortMaskClear() (*uint32, uint32) 

Return the register and mask to disable a given port. This can be used to implement bit-banged drivers.

func (Pin) PortMaskSet

func (p Pin) PortMaskSet() (*uint32, uint32) 

Return the register and mask to enable a given GPIO pin. This can be used to implement bit-banged drivers.

func (Pin) Set

func (p Pin) Set(high bool) 

Set the pin to high or low. Warning: only use this on an output pin!

func (Pin) SetInterrupt

func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error 

SetInterrupt sets an interrupt to be executed when a particular pin changes state. The pin should already be configured as an input, including a pull up or down if no external pull is provided.

This call will replace a previously set callback on this pin. You can pass a nil func to unset the pin change interrupt. If you do so, the change parameter is ignored and can be set to any value (such as 0).

func (Pin) Toggle

func (p Pin) Toggle() 

Toggle switches an output pin from low to high or from high to low. Warning: only use this on an output pin!

type PinChange

type PinChange uint8 

type PinConfig

type PinConfig struct { Mode PinMode } 

type PinMode

type PinMode uint8 

PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.

type RingBuffer

type RingBuffer struct { rxbuffer[bufferSize]volatile.Register8 headvolatile.Register8 tailvolatile.Register8 } 

RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php

func (*RingBuffer) Clear

func (rb *RingBuffer) Clear() 

Clear resets the head and tail pointer to zero.

func (*RingBuffer) Get

func (rb *RingBuffer) Get() (byte, bool) 

Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.

func (*RingBuffer) Put

func (rb *RingBuffer) Put(val byte) bool 

Put stores a byte in the buffer. If the buffer is already full, the method will return false.

func (*RingBuffer) Used

func (rb *RingBuffer) Used() uint8 

Used returns how many bytes in buffer have been used.

type SPI

type SPI struct { Bus*sam.SERCOM_SPIM_Type SERCOMuint8 } 

SPI

func (*SPI) Configure

func (spi *SPI) Configure(config SPIConfig) error 

Configure is intended to setup the SPI interface.

func (*SPI) Transfer

func (spi *SPI) Transfer(w byte) (byte, error) 

Transfer writes/reads a single byte using the SPI interface.

func (*SPI) Tx

func (spi *SPI) Tx(w, r []byte) error 

Tx handles read/write operation for SPI interface. Since SPI is a synchronous write/read interface, there must always be the same number of bytes written as bytes read. The Tx method knows about this, and offers a few different ways of calling it.

This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer. Note that the tx and rx buffers must be the same size:

spi.Tx(tx, rx) 

This form sends the tx buffer, ignoring the result. Useful for sending “commands” that return zeros until all the bytes in the command packet have been received:

spi.Tx(tx, nil) 

This form sends zeros, putting the result into the rx buffer. Good for reading a “result packet”:

spi.Tx(nil, rx) 

type SPIConfig

type SPIConfig struct { Frequencyuint32 SCKPin SDOPin SDIPin LSBFirstbool Modeuint8 } 

SPIConfig is used to store config info for SPI.

type Serialer

type Serialer interface { WriteByte(c byte) error Write(data []byte) (n int, err error) Configure(config UARTConfig) error Buffered() int ReadByte() (byte, error) DTR() bool RTS() bool } 

type TCC

type TCC sam.TCC_Type 

TCC is one timer peripheral, which consists of a counter and multiple output channels (that can be connected to actual pins). You can set the frequency using SetPeriod, but only for all the channels in this timer peripheral at once.

func (*TCC) Channel

func (tcc *TCC) Channel(pin Pin) (uint8, error) 

Channel returns a PWM channel for the given pin. Note that one channel may be shared between multiple pins, and so will have the same duty cycle. If this is not desirable, look for a different TCC or consider using a different pin.

func (*TCC) Configure

func (tcc *TCC) Configure(config PWMConfig) error 

Configure enables and configures this TCC.

func (*TCC) Counter

func (tcc *TCC) Counter() uint32 

Counter returns the current counter value of the timer in this TCC peripheral. It may be useful for debugging.

func (*TCC) Set

func (tcc *TCC) Set(channel uint8, value uint32) 

Set updates the channel value. This is used to control the channel duty cycle, in other words the fraction of time the channel output is high (or low when inverted). For example, to set it to a 25% duty cycle, use:

tcc.Set(channel, tcc.Top() / 4) 

tcc.Set(channel, 0) will set the output to low and tcc.Set(channel, tcc.Top()) will set the output to high, assuming the output isn’t inverted.

func (*TCC) SetInverting

func (tcc *TCC) SetInverting(channel uint8, inverting bool) 

SetInverting sets whether to invert the output of this channel. Without inverting, a 25% duty cycle would mean the output is high for 25% of the time and low for the rest. Inverting flips the output as if a NOT gate was placed at the output, meaning that the output would be 25% low and 75% high with a duty cycle of 25%.

func (*TCC) SetPeriod

func (tcc *TCC) SetPeriod(period uint64) error 

SetPeriod updates the period of this TCC peripheral. To set a particular frequency, use the following formula:

period = 1e9 / frequency 

If you use a period of 0, a period that works well for LEDs will be picked.

SetPeriod will not change the prescaler, but also won’t change the current value in any of the channels. This means that you may need to update the value for the particular channel.

Note that you cannot pick any arbitrary period after the TCC peripheral has been configured. If you want to switch between frequencies, pick the lowest frequency (longest period) once when calling Configure and adjust the frequency here as needed.

func (*TCC) Top

func (tcc *TCC) Top() uint32 

Top returns the current counter top, for use in duty cycle calculation. It will only change with a call to Configure or SetPeriod, otherwise it is constant.

The value returned here is hardware dependent. In general, it’s best to treat it as an opaque value that can be divided by some number and passed to tcc.Set (see tcc.Set for more information).

type UART

type UART struct { Buffer*RingBuffer Bus*sam.SERCOM_USART_INT_Type SERCOMuint8 Interruptinterrupt.Interrupt// RXC interrupt } 

UART on the SAMD51.

func (*UART) Buffered

func (uart *UART) Buffered() int 

Buffered returns the number of bytes currently stored in the RX buffer.

func (*UART) Configure

func (uart *UART) Configure(config UARTConfig) error 

Configure the UART.

func (*UART) Read

func (uart *UART) Read(data []byte) (n int, err error) 

Read from the RX buffer.

func (*UART) ReadByte

func (uart *UART) ReadByte() (byte, error) 

ReadByte reads a single byte from the RX buffer. If there is no data in the buffer, returns an error.

func (*UART) Receive

func (uart *UART) Receive(data byte) 

Receive handles adding data to the UART’s data buffer. Usually called by the IRQ handler for a machine.

func (*UART) SetBaudRate

func (uart *UART) SetBaudRate(br uint32) 

SetBaudRate sets the communication speed for the UART.

func (*UART) Write

func (uart *UART) Write(data []byte) (n int, err error) 

Write data over the UART’s Tx. This function blocks until the data is finished being sent.

func (*UART) WriteByte

func (uart *UART) WriteByte(c byte) error 

WriteByte writes a byte of data over the UART’s Tx. This function blocks until the data is finished being sent.

type UARTConfig

type UARTConfig struct { BaudRateuint32 TXPin RXPin RTSPin CTSPin } 

UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.

type UARTParity

type UARTParity uint8 

UARTParity is the parity setting to be used for UART communication.

type USBDevice

type USBDevice struct { initcompletebool InitEndpointCompletebool } 

func (*USBDevice) Configure

func (dev *USBDevice) Configure(config UARTConfig) 

Configure the USB peripheral. The config is here for compatibility with the UART interface.

type WatchdogConfig

type WatchdogConfig struct { // The timeout (in milliseconds) before the watchdog fires. // // If the requested timeout exceeds `MaxTimeout` it will be rounded // down. TimeoutMillis uint32 } 

WatchdogConfig holds configuration for the watchdog timer.