BERT Embeddings (Base Cased) Quantized

Description

This model contains a deep bidirectional transformer trained on Wikipedia and the BookCorpus. The details are described in the paper “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”.

Predicted Entities

Download Copy S3 URI

How to use

... embeddings = BertEmbeddings.pretrained("bert_base_cased_quantized", "en") \ .setInputCols("sentence", "token") \ .setOutputCol("embeddings") nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings]) pipeline_model = nlp_pipeline.fit(spark.createDataFrame([[""]]).toDF("text")) result = pipeline_model.transform(spark.createDataFrame([['I love NLP']], ["text"])) 
... val embeddings = BertEmbeddings.pretrained("bert_base_cased_quantized", "en") .setInputCols("sentence", "token") .setOutputCol("embeddings") val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings)) val data = Seq("I love NLP").toDF("text") val result = pipeline.fit(data).transform(data) 
import nlu text = ["I love NLP"] embeddings_df = nlu.load('en.embed.bert.base_cased').predict(text, output_level='token') embeddings_df 

Results

Results	token	en_embed_bert_base_cased_embeddings	I[0.43879568576812744, -0.40160006284713745, 0....	love[0.21737590432167053, -0.3865768313407898, -0....	NLP[-0.16226479411125183, -0.053727392107248306, ... {:.model-param} 

Model Information

Model Name: bert_base_cased_quantized
Compatibility: Spark NLP 5.0.0+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [bert]
Language: en
Size: 139.5 MB
Case sensitive: true

References

The model is imported from https://tfhub.dev/google/bert_cased_L-12_H-768_A-12/1