From 6475f68ff6d1755375df03317a74f0eed8a3b25d Mon Sep 17 00:00:00 2001From: Jeff Johnston Date: Tue, 3 Feb 2004 00:42:19 +0000Subject: 2004-02-02 Jeff Johnston * COPYING.NEWLIB: Updated with 1.12 version. * README: Ditto. * docs_html: Updated to point to new libc/libm docs. * libc_html: Updated to 1.12. * libm_html: Ditto. * news_html: Ditto.--- libm_html | 762 ++++++++++++++++++++++++++++++++++++++++++++------------------ 1 file changed, 545 insertions(+), 217 deletions(-)(limited to 'libm_html')diff --git a/libm_html b/libm_htmlindex 79f09db..b3e0d8f 100644--- a/libm_html+++ b/libm_html@@ -1,6 +1,6 @@ -+ @@ -119,7 +128,7 @@ machines--are available when you include `fastmath.h' instead of 1.16 frexp, frexpf---split floating-point number | | Split floating-point number |
1.17 gamma, gammaf, lgamma, lgammaf, gamma_r, | | Logarithmic gamma function |
1.18 hypot, hypotf---distance from origin | | Distance from origin |
-1.33 ilogb, ilogbf---get exponent of floating point number | | Get exponent |
+1.33 ilogb, ilogbf---get exponent of floating-point number | | Get exponent |
1.34 infinity, infinityf---representation of infinity | | Floating infinity |
1.19 isnan,isnanf,isinf,isinff,finite,finitef---test for exceptional numbers | | Check type of number |
1.20 ldexp, ldexpf---load exponent | | Load exponent |
@@ -128,11 +137,11 @@ machines--are available when you include `fastmath.h' instead of 1.35 log1p, log1pf---log of 1 + x | | Log of 1 + X |
1.36 matherr---modifiable math error handler | | Modifiable math error handler |
1.37 modf, modff---split fractional and integer parts | | Split fractional and integer parts |
-1.38 nan, nanf---representation of infinity | | Floating Not a Number |
+1.38 nan, nanf---representation of "Not a Number" | | Floating Not a Number |
1.39 nextafter, nextafterf---get next number | | Get next representable number |
1.23 pow, powf---x to the power y | | X to the power Y |
1.24 remainder, remainderf---round and remainder | | remainder of X divided by Y |
-1.40 scalbn, scalbnf---scale by integer | | scalbn |
+1.40 scalbn, scalbnf---scale by power of two | | scalbn |
1.26 sin, sinf, cos, cosf---sine or cosine | | Sine or cosine (sin, cos) |
1.27 sinh, sinhf---hyperbolic sine | | Hyperbolic sine |
1.25 sqrt, sqrtf---positive square root | | Positive square root |
@@ -149,9 +158,9 @@ machines--are available when you include `fastmath.h' instead of [ > ] | | [ << ] | [ Up ] | -[ >> ] | - | | | | [Top] | -[Contents] | +[ >> ] | + | | | | [Top] | +[Contents] | [Index] | [ ? ] | @@ -184,7 +193,7 @@ called, but warning message are not printed.
In SVID mode, functions which overflow return 3.40282346638528860e+38,-the maximum single precision floating point value, rather than infinity.+the maximum single-precision floating-point value, rather than infinity. Also, errno is set correctly, matherr is called, and, if matherr returns 0, warning messages are printed for some errors. For example, by default `log(-1.0)' writes this message on standard@@ -203,11 +212,11 @@ The library is set to X/Open mode by default.
@@ -231,6 +240,7 @@ its calculations on floats.
Returns
+acos and acosf return values in radians, in the range of 0 to pi. If x is not between -1 and 1, the returned value is NaN@@ -250,11 +260,11 @@ You can modify error handling for these functions using matherr.
@@ -268,7 +278,8 @@ float acoshf(float x); Description
acosh calculates the inverse hyperbolic cosine of x. acosh is defined as-+
x must be a number greater than or equal to 1.
@@ -301,11 +312,11 @@ for portable programs.
@@ -332,6 +343,7 @@ You can modify error handling for these routines using matherr.
Returns
+asin returns values in radians, in the range of -pi/2 to pi/2. If x is not in the range -1 to 1, asin and asinf@@ -351,11 +363,11 @@ You can change this error treatment using matherr.
@@ -369,7 +381,8 @@ float asinhf(float x); Description
asinh calculates the inverse hyperbolic sine of x. asinh is defined as-+
| | sgn(x) * log(abs(x) + sqrt(1+x*x))+ |
asinhf is identical, other than taking and returning floats.
@@ -393,11 +406,11 @@ Neither asinh nor asinhf are ANSI C.
@@ -419,6 +432,7 @@ float atanf(float x);
Returns
+atan returns a value in radians, in the range of -pi/2 to pi/2.
@@ -435,11 +449,11 @@ float atanf(float x);
@@ -455,6 +469,7 @@ float atan2f(float y,float x); atan2 computes the inverse tangent (arc tangent) of y/x. atan2 produces the correct result even for angles near+pi/2 or -pi/2 (that is, when x is near 0). @@ -465,6 +480,7 @@ float atan2f(float y,float x);
Returns
atan2 and atan2f return a value in radians, in the range of+-pi to pi.
If both x and y are 0.0, atan2 causes a DOMAIN error.@@ -487,11 +503,11 @@ You can modify error handling for these functions using matherr.
@@ -516,12 +532,14 @@ float atanhf(float x); If-is greater than 1, the global errno is set to EDOM and+
is greater than 1, the global errno is set to EDOM and the result is a NaN. A DOMAIN error is reported. If-is 1, the global errno is set to EDOM; and the result is+
is 1, the global errno is set to EDOM; and the result is infinity with the same sign as x. A SING error is reported. @@ -545,9 +563,9 @@ Neither atanh nor atanhf are ANSI C.
[ > ] | | [ << ] | [ Up ] | -[ >> ] | - | | | | [Top] | -[Contents] | +[ >> ] | + | | | | [Top] | +[Contents] | [Index] | [ ? ] | @@ -571,7 +589,9 @@ float ynf(int n, float x); Description
The Bessel functions are a family of functions that solve the differential equation-These functions have many applications in engineering and physics.+| | 2 2 2+ x y'' + xy' + (x - p )y = 0+ |
These functions have many applications in engineering and physics. jn calculates the Bessel function of the first kind of order@@ -607,11 +627,11 @@ None of the Bessel functions are in ANSI C.
@@ -627,7 +647,8 @@ float coshf(float x) cosh computes the hyperbolic cosine of the argument x. cosh(x) is defined as-+
Angles are specified in radians. coshf is identical, save that it takes and returns float.@@ -659,11 +680,11 @@ function matherr.
@@ -712,11 +733,11 @@ None of the variants of erf are ANSI C. @@ -729,6 +750,7 @@ float expf(float x); Description
exp and expf calculate the exponential of x, that is,+e raised to the power x (where e is the base of the natural system of logarithms, approximately 2.71828). @@ -758,11 +780,11 @@ either case, errno is set to ERANGE.
@@ -799,11 +821,11 @@ The calculated value is returned. No errors are detected. @@ -844,11 +866,11 @@ the nearest integer greater than or equal to x. @@ -867,6 +889,7 @@ remainder of x/y (x modulo y).
Returns
The fmod function returns the value+x-i*y, for the largest integer i such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.@@ -892,11 +915,11 @@ You can modify error treatment for these functions using matherr. @@ -908,7 +931,7 @@ double frexp(double val, int *exp); float frexpf(float val, int *exp); Description
-All non zero, normal numbers can be described as m * 2**p.+All nonzero, normal numbers can be described as m * 2**p. frexp represents the double val as a mantissa m and a power of two p. The resulting mantissa will always be greater than or equal to 0.5, and less than 1.0 (as@@ -916,6 +939,10 @@ long as val is nonzero). The power of two will be stored in *exp. +m and p are calculated so that+val is m times 2 to the power p.+
+ frexpf is identical, other than taking and returning floats rather than doubles.
@@ -941,11 +968,11 @@ or Nan, frexp will set *exp to 0 | [ < ] | [ > ] | - | [ << ] | + | [ << ] | [ Up ] | -[ >> ] | - | | | | [Top] | -[Contents] | +[ >> ] | + | | | | [Top] | +[Contents] | [Index] | [ ? ] |
@@ -967,8 +994,11 @@ float lgammaf_r(float x, int *signgamp); the natural logarithm of the gamma function of x. The gamma function (exp(gamma(x))) is a generalization of factorial, and retains the property that+exp(gamma(N)) is equivalent to N*exp(gamma(N-1)). Accordingly, the results of the gamma function itself grow very quickly. gamma is defined as+the natural log of the gamma function, rather than the gamma function+itself, to extend the useful range of results representable. @@ -1021,11 +1051,11 @@ Neither gamma nor gammaf is ANSI C.
@@ -1038,6 +1068,7 @@ float hypotf(float x, float y); Description
hypot calculates the Euclidean distance+sqrt(x*x + y*y) between the origin (0,0) and a point represented by the Cartesian coordinates (x,y). hypotf differs only in the type of its arguments and result.@@ -1065,11 +1096,11 @@ You can change the error treatment with matherr. @@ -1085,7 +1116,7 @@ int isinff(float arg); int finitef(float arg); Description
-These functions provide information on the floating point+These functions provide information on the floating-point argument supplied. @@ -1095,13 +1126,13 @@ There are five major number formats -
zero a number which contains all zero bits. subnormal-Is used to represent number with a zero exponent, but a non zero fraction.+Is used to represent number with a zero exponent, but a nonzero fraction. normal A number with an exponent, and a fraction infinity A number with an all 1's exponent and a zero fraction. NAN-A number with an all 1's exponent and a non zero fraction.+A number with an all 1's exponent and a nonzero fraction. @@ -1112,7 +1143,7 @@ returns 1 if the argument is infinity. finite returns 1 if the argument is zero, subnormal or normal. The isnanf, isinff and finitef perform the same operations as their isnan, isinf and finite-counterparts, but on single precision floating point numbers.+counterparts, but on single-precision floating-point numbers.
@@ -1124,11 +1155,11 @@ counterparts, but on single precision floating point numbers.
@@ -1141,6 +1172,7 @@ float ldexpf(float val, int exp); Description
ldexp calculates the value+val times 2 to the power exp. ldexpf is identical, save that it takes and returns float rather than double values. @@ -1169,11 +1201,11 @@ On overflow, ldexp returns plus or minus HUGE_VAL.
@@ -1217,11 +1249,11 @@ When x is negative, the returned value is -HUGE_VAL and @@ -1262,11 +1294,11 @@ See the description of log for information on errors. @@ -1278,7 +1310,7 @@ double pow(double x, double y); float pow(float x, float y); Description
-pow and powf calculate x raised to the exp1.0nt y.+pow and powf calculate x raised to the exponent y.
@@ -1309,11 +1341,11 @@ You can modify error handling for these functions using matherr.
@@ -1349,11 +1381,11 @@ float remainderf(float x, float y); @@ -1391,11 +1423,11 @@ negative, the global value errno is set to EDOM (domai @@ -1437,11 +1469,11 @@ The sine or cosine of x is returned. @@ -1455,7 +1487,8 @@ float sinhf(float x); Description
sinh computes the hyperbolic sine of the argument x. Angles are specified in radians. sinh(x) is defined as-+
sinhf is identical, save that it takes and returns float values.
@@ -1489,11 +1522,11 @@ You can modify error handling for these functions with matherr.
@@ -1531,11 +1564,11 @@ The tangent of x is returned. @@ -1575,11 +1608,11 @@ The hyperbolic tangent of x is returned. @@ -1611,11 +1644,11 @@ The cube root is returned. @@ -1657,11 +1690,11 @@ Definition (Issue 2). @@ -1675,6 +1708,7 @@ float expm1f(float x); Description
expm1 and expm1f calculate the exponential of x and subtract 1, that is,+e raised to the power x minus 1 (where e is the base of the natural system of logarithms, approximately 2.71828). The result is accurate even for small values of x, where using exp(x)-1 would lose many@@ -1699,15 +1733,15 @@ the System V Interface Definition (Issue 2). - 1.33 ilogb, ilogbf---get exponent of floating point number
+ 1.33 ilogb, ilogbf---get exponent of floating-point number
Synopsis | | #include <math.h>@@ -1717,7 +1751,7 @@ int ilogbf(float val); |
Description
-All non zero, normal numbers can be described as m *+All nonzero, normal numbers can be described as m * 2**p. ilogb and ilogbf examine the argument val, and return p. The functions frexp and frexpf are similar to ilogb and ilogbf, but also@@ -1729,7 +1763,7 @@ return m.
ilogb and ilogbf return the power of two used to form the-floating point argument. If val is 0, they return -+floating-point argument. If val is 0, they return - INT_MAX (INT_MAX is defined in limits.h). If val is infinite, or NaN, they return INT_MAX.
@@ -1745,11 +1779,11 @@ the System V Interface Definition (Issue 2).
@@ -1762,8 +1796,8 @@ float infinityf(void); Description
infinity and infinityf return the special number IEEE-infinity in double and single precision arithmetic-respectivly.+infinity in double- and single-precision arithmetic+respectively.
@@ -1773,11 +1807,11 @@ respectivly.
@@ -1818,11 +1852,11 @@ Interface Definition (Issue 2). @@ -1940,11 +1974,11 @@ an error message. @@ -1985,24 +2019,25 @@ sign as the supplied argument val. - 1.38 nan, nanf---representation of infinity
+ 1.38 nan, nanf---representation of "Not a Number"
Synopsis | | #include <math.h>-double nan(void);-float nanf(void);+double nan(const char *);+float nanf(const char *); |
Description
nan and nanf return an IEEE NaN (Not a Number) in-double and single precision arithmetic respectivly.+double- and single-precision arithmetic respectively. The+argument is currently disregarded.
@@ -2012,11 +2047,11 @@ double and single precision arithmetic respectivly.
@@ -2028,7 +2063,7 @@ double nextafter(double val, double dir); float nextafterf(float val, float dir); Description
-nextafter returns the double) precision floating point number+nextafter returns the double-precision floating-point number closest to val in the direction toward dir. nextafterf performs the same operation in single precision. For example, nextafter(0.0,1.0) returns the smallest positive number which is@@ -2054,15 +2089,15 @@ or by the System V Interface Definition (Issue 2). - 1.40 scalbn, scalbnf---scale by integer
+ 1.40 scalbn, scalbnf---scale by power of two
Synopsis @@ -2137,10 +2172,10 @@ calls; in that situation, the math functions behave reentrantly. | [ < ] | [ > ] | | [ << ] | -[ Up ] | +[ Up ] | [ >> ] | - | | | | [Top] | -[Contents] | + | | | | [Top] | +[Contents] | [Index] | [ ? ] |
@@ -2243,8 +2278,8 @@ calls; in that situation, the math functions behave reentrantly. | hypotf | 1.18 hypot, hypotf---distance from origin |
|
| I | | |
- | ilogb | 1.33 ilogb, ilogbf---get exponent of floating point number |
- | ilogbf | 1.33 ilogb, ilogbf---get exponent of floating point number |
+ | ilogb | 1.33 ilogb, ilogbf---get exponent of floating-point number |
+ | ilogbf | 1.33 ilogb, ilogbf---get exponent of floating-point number |
| infinity | 1.34 infinity, infinityf---representation of infinity |
| infinityf | 1.34 infinity, infinityf---representation of infinity |
| isinf | 1.19 isnan,isnanf,isinf,isinff,finite,finitef---test for exceptional numbers |
@@ -2281,8 +2316,8 @@ calls; in that situation, the math functions behave reentrantly. | modff | 1.37 modf, modff---split fractional and integer parts |
|
| N | | |
- | nan | 1.38 nan, nanf---representation of infinity |
- | nanf | 1.38 nan, nanf---representation of infinity |
+ | nan | 1.38 nan, nanf---representation of "Not a Number" |
+ | nanf | 1.38 nan, nanf---representation of "Not a Number" |
| nextafter | 1.39 nextafter, nextafterf---get next number |
| nextafterf | 1.39 nextafter, nextafterf---get next number |
|
@@ -2299,8 +2334,8 @@ calls; in that situation, the math functions behave reentrantly. | remainderf | 1.24 remainder, remainderf---round and remainder |
|
| S | | |
- | scalbn | 1.40 scalbn, scalbnf---scale by integer |
- | scalbnf | 1.40 scalbn, scalbnf---scale by integer |
+ | scalbn | 1.40 scalbn, scalbnf---scale by power of two |
+ | scalbnf | 1.40 scalbn, scalbnf---scale by power of two |
| sin | 1.26 sin, sinf, cos, cosf---sine or cosine |
| sinf | 1.26 sin, sinf, cos, cosf---sine or cosine |
| sinh | 1.27 sinh, sinhf---hyperbolic sine |
@@ -2362,3 +2397,296 @@ calls; in that situation, the math functions behave reentrantly.
+++Table of Contents
++1. Mathematical Functions (`math.h')+
++1.1 Version of library+
+1.2 acos, acosf---arc cosine+
+1.3 acosh, acoshf---inverse hyperbolic cosine+
+1.4 asin, asinf---arc sine+
+1.5 asinh, asinhf---inverse hyperbolic sine+
+1.6 atan, atanf---arc tangent+
+1.7 atan2, atan2f---arc tangent of y/x+
+1.8 atanh, atanhf---inverse hyperbolic tangent+
+1.9 jN,jNf,yN,yNf---Bessel functions+
+1.10 cosh, coshf---hyperbolic cosine+
+1.11 erf, erff, erfc, erfcf---error function+
+1.12 exp, expf---exponential+
+1.13 fabs, fabsf---absolute value (magnitude)+
+1.14 floor, floorf, ceil, ceilf---floor and ceiling+
+1.15 fmod, fmodf---floating-point remainder (modulo)+
+1.16 frexp, frexpf---split floating-point number+
+1.17 gamma, gammaf, lgamma, lgammaf, gamma_r,+
+1.18 hypot, hypotf---distance from origin+
+1.19 isnan,isnanf,isinf,isinff,finite,finitef---test for exceptional numbers+
+1.20 ldexp, ldexpf---load exponent+
+1.21 log, logf---natural logarithms+
+1.22 log10, log10f---base 10 logarithms+
+1.23 pow, powf---x to the power y+
+1.24 remainder, remainderf---round and remainder+
+1.25 sqrt, sqrtf---positive square root+
+1.26 sin, sinf, cos, cosf---sine or cosine+
+1.27 sinh, sinhf---hyperbolic sine+
+1.28 tan, tanf---tangent+
+1.29 tanh, tanhf---hyperbolic tangent+
+1.30 cbrt, cbrtf---cube root+
+1.31 copysign, copysignf---sign of y, magnitude of x+
+1.32 expm1, expm1f---exponential minus 1+
+1.33 ilogb, ilogbf---get exponent of floating-point number+
+1.34 infinity, infinityf---representation of infinity+
+1.35 log1p, log1pf---log of 1 + x+
+1.36 matherr---modifiable math error handler+
+1.37 modf, modff---split fractional and integer parts+
+1.38 nan, nanf---representation of "Not a Number"+
+1.39 nextafter, nextafterf---get next number+
+1.40 scalbn, scalbnf---scale by power of two+
+
+2. Reentrancy Properties of libm+
+Index+
+
+
+++Short Table of Contents
++1. Mathematical Functions (`math.h')+
+2. Reentrancy Properties of libm+
+Index+
++
+
+++About this document
+This document was generated by Jeff Johnston on January, 30 2004+using texi2html++The buttons in the navigation panels have the following meaning:++++| Button | + Name | + Go to | + From 1.2.3 go to | +
++| + [ < ] | ++Back+ | ++previous section in reading order+ | ++1.2.2+ | +
++| + [ > ] | ++Forward+ | ++next section in reading order+ | ++1.2.4+ | +
++| + [ << ] | ++FastBack+ | ++previous or up-and-previous section+ | ++1.1+ | +
++| + [ Up ] | ++Up+ | ++up section+ | ++1.2+ | +
++| + [ >> ] | ++FastForward+ | ++next or up-and-next section+ | ++1.3+ | +
++| + [Top] | ++Top+ | ++cover (top) of document+ | ++ + | +
++| + [Contents] | ++Contents+ | ++table of contents+ | ++ + | +
++| + [Index] | ++Index+ | ++concept index+ | ++ + | +
++| + [ ? ] | ++About+ | ++this page+ | ++ + | +
+
++where the Example assumes that the current position+is at Subsubsection One-Two-Three of a document of+the following structure:++- 1. Section One
++- 1.1 Subsection One-One
++- 1.2 Subsection One-Two
++- 1.2.1 Subsubsection One-Two-One+
- 1.2.2 Subsubsection One-Two-Two+
- 1.2.3 Subsubsection One-Two-Three +<== Current Position +
- 1.2.4 Subsubsection One-Two-Four+
+- 1.3 Subsection One-Three
++- 1.4 Subsection One-Four
+
+
++
+
++This document was generated+by Jeff Johnston on January, 30 2004+using texi2html+++