Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Represent a polygon with rounded corners
ResourceFunction["RoundedPolygon"][{p1,…,pn},r] represents a filled rounded polygon with points pi and rounding radius r. | |
ResourceFunction["RoundedPolygon"][{p1,…,pn},{r1,…,rn}] represents a filled rounded polygon with points pi and corresponding rounding radii ri. |
A triangle with rounded corners:
In[1]:= | ![]() |
Out[1]= | ![]() |
A rounded rectangle with different rounding radii for each corner:
In[2]:= | ![]() |
Out[2]= | ![]() |
Coordinates for a star-shaped polygon:
In[3]:= | ![]() |
Show the original polygon and the rounded version:
In[4]:= | ![]() |
Out[4]= | ![]() |
Use different rounding radii for each vertex:
In[5]:= | ![]() |
Out[5]= | ![]() |
A rounded 3D polygon:
In[6]:= | ![]() |
Out[6]= | ![]() |
Plot a function over a rounded polygon domain:
In[7]:= | ![]() |
Out[7]= | ![]() |
A polyhedron with rounded faces:
In[8]:= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
RoundedPolygon returns a Polygon object:
In[10]:= | ![]() |
Out[10]= | ![]() |
Applying RoundedPolygon to a Rectangle is equivalent to setting its RoundingRadius:
In[11]:= | ![]() |
Out[11]= | ![]() |
If the rounding radius is too large, RoundedPolygon may give unexpected results:
In[12]:= | ![]() |
Out[12]= | ![]() |
Use a smaller rounding radius:
In[13]:= | ![]() |
Out[13]= | ![]() |
Rounded Voronoi cells:
In[14]:= | ![]() |
Out[14]= | ![]() |
Use RoundedPolygon with the resource function PerforatePolygons on a truncated icosahedron:
In[15]:= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
Use RoundedPolygon with the resource function OutlinePolygons on a truncated icosahedron:
In[17]:= | ![]() |
Out[17]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License