Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the adjacency tensor of an arbitrary hypergraph
ResourceFunction["AdjacencyTensor"][h] gives the vertex adjacency tensor of the (ordered or orderless) hypergraph h. |
"OrderedHyperedges" | False | whether to treat hyperedges as being ordered (directed) |
The adjacency tensor of an orderless hypergraph, with hyperedges of arity 3:
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
The adjacency tensor of an ordered hypergraph, with hyperedges of arity 3:
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
The adjacency tensor of an orderless hypergraph, with hyperedges of arity 5:
In[5]:= | ![]() |
Out[5]= | ![]() |
AdjacencyTensor supports multihypergraphs, in which case the tensor entries represent hyperedge multiplicities:
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
When the arity of hyperedges is equal to 2, the output of AdjacencyTensor is identical to the output of AdjacencyMatrix:
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
The adjacency tensor of an orderless hypergraph is always symmetric across all indices:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
The adjacency tensor of an ordered hypergraph is not necessarily symmetric across all indices:
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
The adjacency tensor of a hypergraph with self-loops has diagonal entries:
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
In[17]:= | ![]() |
Out[17]= | ![]() |
Hyperedges can be of arbitrary arity:
In[18]:= | ![]() |
Out[18]= | ![]() |
By default, all hyperedges are treated as orderless (i.e. undirected):
In[19]:= | ![]() |
Out[19]= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
Use "OrderedHyperedges"→True to treat hyperedges as ordered (i.e. directed):
In[21]:= | ![]() |
Out[21]= | ![]() |
In[22]:= | ![]() |
Out[22]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License