
90

Web services

Throughout this book, we show you ways of integrating Ruby with different applica-
tions and services. Some scenarios depend on a particular protocol or architecture,
such as using Lightweight Directory Access Protocol (LDAP), sharing data through
a relational database, or moving messages around with WebSphere MQ (WMQ). In
this chapter, we’ll explore the web architecture and look at how we can use web ser-
vices across language, platform, and application boundaries.

 To this end, we’ll focus on Service Oriented Architecture (SOA) with Ruby. SOA
is not a particular product, technology, or protocol—it’s an architecture for build-
ing services with the intent to reuse them in different contexts and combine them
into larger applications. In this chapter, we’re going to choose common protocols
and message formats and discuss three common styles for building web services:
plain HTTP, REST, and SOAP.

 First, we’ll cover the foundation and show you how to use HTTP and URLs. Then
we’ll venture into the world of RESTful web services and show you how to handle
resources, representations, and the uniform interface. Finally, we’ll talk about

This chapter covers
■ Using HTTP from Ruby
■ Building REST services with Rails
■ Using REST services with ActiveResource
■ Using SOAP with SOAP4R

Licensed to Manning Marketing <mkt@manning.com>

91Using HTTP

SOAP and using SOAP4R as a means for integrating with services developed around
the SOAP stack, and in particular J2EE and .Net applications.

5.1 Using HTTP
The basic building blocks of the web are the HTTP protocol and the use of URLs for
addressing, and the content is mostly HTML and various media types like images,
music, and video. In this chapter, we’re going to focus on the programmatic web,
which is all about machines talking to machines and application-to-application inte-
gration. As a result, we’ll pay much more attention to structured data formats like
XML, JSON, and even CSV.

5.1.1 HTTP GET

We’re going to start with the simplest scenario and show you how to retrieve data from
a remote web service and then how to parse the resulting document into structured
data that you can process with Ruby. For this example we picked CSV. Although most
people equate web services with XML, there’s a surprising abundance of structured
data out there that is not XML. In this section, we’ll take the opportunity to show you
how easy it is to use non-XML data, delivered over the web.
Problem
You’re building a market intelligence application that needs to retrieve historical
stock prices about various public companies. That information is publicly available on
the web, but you need to retrieve it and parse it into data you can use.
Solution
For this example, we’re going to use Google Finance to get historical stock prices for
Google itself. Google Finance has a URL you can use without registering or authenti-
cating. It provides historical data in the form of a CSV document.

 Ruby provides two libraries for working with HTTP. For full HTTP support, we’ll
turn to Net::HTTP, which we cover in the next section, but for the common use case of
reading data from a web service, we’ll use the more convenient open-uri.

 So, to start, we’re going to construct a URL and use the open method to create a
connection and read the data:

url = "http://finance.google.com/finance/historical?q=NASDAQ:#{symbol}&

➥ output=csv"
data = open(url).read

Not all data on the web is HTML or XML, and in this example we retrieve a CSV docu-
ment. We’re going to use FasterCSV to parse the document (you will learn more about
FasterCSV in chapter 13). Let’s parse the document into a set of rows, and convert
each row into a hash:

csv = FasterCSV.parse data, :headers=>true, :converters=>:numeric
csv.map { |r| r.to_hash }

Now we’re going to roll all of this into a single method called historical_
stock_prices, so we can use it to read historical stock prices in our applications.
We’re also going to follow another Ruby idiom that allows us to either require the

Licensed to Manning Marketing <mkt@manning.com>

92 CHAPTER 5 Web services

file as a library or run it from the command line as a script. Listing 5.1 shows the
entire program.

require 'rubygems'
require 'open-uri'
require 'faster-csv'

def historical_stock_prices(ticker)
 url = "http://finance.google.com/finance/historical

➥ ?q=NASDAQ:#{ticker}&output=csv"
 data = open(url).read
 csv = FasterCSV.parse data, :headers=>true,
 :converters=>:numeric
 csv.map { |r| r.to_hash }
end

if __FILE__ == $0
 pp historical_stock_prices(ARGV.first)
end

Here’s what we get when we run the program from the command line, showing one
line from the actual result:

$ ruby historical.rb GOOG
=> {"High"=>522.07, "Open"=>521.28, "Close"=>514.48, "Date"=>"10-Sep-07",
"Volume"=>3225800, "Low"=>510.88}

Discussion
Using the open-uri library is the easiest way to GET content from an HTTP server. It’s
designed to be simple to use and to handle the most common cases.

 Our example was simple enough that we could treat the URL as a string. In more
complex use cases, you will want to use URI objects instead. URI is a library that can
parse a URI into its components, like host, path, and query string. You can also use it
to construct URIs from their component parts and manipulate them. It includes
classes for supporting HTTP and FTP URLs, email (mailto:), and LDAP URIs, and is
easily extended.

 The open-uri library adds a read method to HTTP and FTP URIs, so let’s see how
we would use it:

uri = URI("http://finance.google.com/finance/historical?output=csv")
uri.query << "&q=NASDAQ:#{CGI.escape(ticker)}"
data = uri.read

Note that we’re using CGI.escape to properly escape a value before including it in the
query string. It’s not necessary for our example, since all the stock-ticker symbols we
want to deal with are ASCII characters, but it’s generally a good idea to deal with spe-
cial characters like = and & appearing in query string parameters.

 The read method returns the content of the HTTP response as a String. Most
times that’s all we care for, and we like the convenience of it. Occasionally, however,

Listing 5.1 Get historical stock prices from Google Finance

Constructs URL
from stock ticker

Retrieves
data from
web server

Parses CSV
document
using
FasterCSV

Licensed to Manning Marketing <mkt@manning.com>

93Using HTTP

we’ll want more information from HTTP headers; for example, to determine the con-
tent type of the response, or to handle redirects.

 In Ruby, each object implements a single class, but you can also add methods to an
object instance, in addition to those provided by its class. There are several ways of
doing this.

 First, open-uri uses the extend method to add metadata methods to the String
object it returns. We can use that to access various HTTP headers, like this:

puts "The actual URL after redirection: #{data.base_uri}"
puts "Content type: #{data.content_type}"
puts "Last modified: #{data.last_modified}"
puts "The document: #{data}"

If you access the web from behind a proxy server, you can tell open-uri to use that
proxy server using the :proxy option. You can set the HTTP_PROXY environment vari-
able and open-uri will pick it up by default. So let’s use that to run our example from
behind a proxy server:

$ export HTTP_PROXY="http://myproxy:8080"
$ ruby historical.rb GOOG

In the next example, we’ll use open-uri to access a local server, bypassing the proxy,
and using HTTP Basic Authentication:

open(url, :proxy=>nil, :http_basic_authentication=>["john", "secret"])

For downloading larger documents, open-uri will also allow you to use a progress bar.
Check the open-uri documentation for more details.

 Now that we have covered retrieving data from a web server, let’s see how we can
send data to a web server by making an HTTP POST request.

5.1.2 HTTP POST

The previous section was a simple scenario using GET to access publicly available infor-
mation. In this section, we’ll turn it up a notch and use HTTP POST to submit data, add
authentication for access control, and handle status codes and errors.
Problem
In your network, you have an existing service that can receive and process orders. You
need a way to turn orders into XML documents and send them over to the order-
processing service.
Solution
Let’s start with the data. To make this solution easy to use, we’re going to support
two types of arguments. The XML document can be passed directly, in the form of a
string, or the data can be passed as a Hash, with the method converting it into an
XML document.

 For this simple example, we’re going to use the XmlSimple library, so let’s install it
first:

gem install xml-simple

Licensed to Manning Marketing <mkt@manning.com>

94 CHAPTER 5 Web services

We will use XmlSimple to convert a hash into an XML document:

if Hash === data
 data = XmlSimple.xml_out(data, 'noattr'=>true, 'contentkey'=>'sku',
 'xmldeclaration'=>true, 'rootname'=>'order')
end

The XML document we’re going to create will look like this:

<?xml version='1.0' standalone='yes'?>
<order>
 <item>
 <quantity>1</quantity>
 <sku>123</sku>
 </item>
 <item>
 <quantity>2</quantity>
 <sku>456</sku>
 </item>
</order>

Now that we have the data, it’s time to create an HTTP connection. We’ll start by pars-
ing the URL string into a URI object, and set up Net::HTTP to use either the HTTP or
HTTPS protocol:

uri = URI.parse(url)
http = Net::HTTP.new(uri.host, uri.port)
http.use_ssl = true if uri.scheme == 'https'

Next, we’re going to set the HTTP headers. We don’t want the server to accept partial
documents, which could happen if the connection drops, so we’re going to tell it
exactly how long the document is. And for extra measure, we’re going to use an MD5
hash to make sure the document is not corrupted:

headers = { 'Content-Type'=>'application/xml',
 'Content-Length'=>data.size.to_s,
 'Content-MD5'=>Digest::MD5.hexdigest(data) }

In this example, we make a single request, so we’ll let Net::HTTP deal with opening
and closing the connection:

post = Net::HTTP::Post.new(uri.path, headers)
post.basic_auth uri.user, uri.password if uri.user
response = http.request post, data

We send the request, and we don’t expect any data in the result, but we do want to know
if our request was successful, so the last thing we’ll do is look at the status code returned
by the server. A successful response is anything with a 2xx status code. Some services
return 200 (OK), but others may return 201 (Created), 202 (Accepted), or 204 (No
Content). In this case, we expect 201 (Created) with the location of the new resource,
but we’ll also respond favorably to any other 2xx status code. All other responses are
treated as error conditions:

case response
 when Net::HTTPCreated; response['Location']

Licensed to Manning Marketing <mkt@manning.com>

95Using HTTP

 when Net::HTTPSuccess; nil
 else response.error!
end

Listing 5.2 shows all these pieces merged into a single file.

require 'rubygems'
require 'uri'
require 'net/https'
require 'xmlsimple'
require 'md5'

def send_order(url, data)
 if Hash === data
 data = XmlSimple.xml_out(data, 'noattr'=>true,
 'contentkey'=>'sku',
 'xmldeclaration'=>true, 'rootname'=>'order')
 end

 uri = URI.parse(url)
 http = Net::HTTP.new(uri.host, uri.port)
 http.use_ssl = true if uri.scheme == 'https'

 headers = { 'Content-Type'=>'application/xml',
 'Content-Length'=>data.size.to_s,
 'Content-MD5'=>Digest::MD5.hexdigest(data) }

 post = Net::HTTP::Post.new(uri.path, headers)
 post.basic_auth uri.user, uri.password if uri.user
 response = http.request post, data

 case response
 when Net::HTTPCreated; response['Location']
 when Net::HTTPSuccess; nil
 else response.error!
 end
end

Now let’s see how we can send a new order with three lines of code (four if you count
the print statement):

order = { 'item'=>[{ 'sku'=>'123', 'quantity'=>1 },
 { 'sku'=>'456', 'quantity'=>2 }] }
url = send_order('https://order.server/create', order)
puts "Our new order at: #{url}" if url

Discussion
Ruby has several libraries for dealing with XML, and which one you choose depends
on the use case. When you need maximum flexibility and the ability to handle ele-
ments, attributes, and text nodes, you can use REXML to work with the XML document
tree. For performance-intensive applications, you can use libxml, a native XML library.
If you have data that you need to convert into an XML document, you can use Builder
instead (we’ll look at using it later in this chapter). Some XML documents map nicely
into a hash, in which case XmlSimple is true to its name. For this particular example,

Listing 5.2 Using HTTP POST and XmlSimple to send a document to the web server

Converts Hash to
XML document

Creates new
Net::HTTP object

Sets headers
for content
type and size Creates new

POST request

Uses HTTP Basic
Authentication

Checks response

Licensed to Manning Marketing <mkt@manning.com>

96 CHAPTER 5 Web services

we chose XmlSimple because it fits nicely with what we wanted to do, but throughout
this book we will use different XML libraries, always choosing the one that’s best for
the task at hand.

 Some developers prefer to write or use APIs where authentication information is
passed as a separate argument on each method call, or stored once in an object. We
prefer to pass authentication information in the URL itself. You’ll notice that the pre-
vious example takes the username and password from the URL and applies it to the
POST request, using HTTP Basic Authentication. Since HTTP Basic Authentication
passes the username and password as clear text, we’ll use that in combination with
HTTPS to encrypt the request from snooping eyes. A URL with authentication infor-
mation in it will look like https://john:secret@example.com/create.

 HTTP is a connectionless protocol; it handles each request individually. The server
doesn’t care whether we send each request in a separate connection or send multiple
requests in a single connection. HTTP 1.1 provides keep-alive connections that we can
use to open a connection once and send multiple requests—the benefit is that we
don’t have to create a TCP connection for each request, and it gives us better latency.
We can do this:

http.start do |conn|
 response = conn.request post, data
end

Our example makes a single request. We could have opened the connection, made
that one request, and closed it. In fact, we did just that when we called the request
method on the Net::HTTP object; it was just masked behind a single method call. If
your code is making several requests to the same server, consider explicitly opening a
connection and using the connection object to make those requests.

 As you’ve seen, the Net::HTTP library covers all the features of the HTTP protocol,
from one-line requests all the way to persistent connections, from GET requests to
documents and forms, with support for HTTPS and HTTP Basic Authentication. It
supports all the common HTTP verbs like GET and POST, the less common ones like
HEAD and OPTIONS, and even the WebDAV headers. It supports all the HTTP headers,
and response codes help you distinguish between successful response codes, redi-
rects, and errors.

 Keep in mind, though, that Net::HTTP is a low-level library. Unlike open-uri, it will
not set the proxy server for you; you’ll need to do that yourself when creating connec-
tions. Most often, we use Net::HTTP for one-off tasks, or to write more convenient
libraries. In section 5.2.3, we’ll talk about one such library called ActiveResource that
provides RESTful access to remote resources, built from Net::HTTP.

 Before we do that, let’s look at the other side of HTTP—the server side. We
showed you how a client can retrieve data from and send data to a web server. Next
we’ll show you how to implement a simple web server that client applications can
retrieve data from.

Licensed to Manning Marketing <mkt@manning.com>

97Using HTTP

5.1.3 Serving HTTP requests

Now that we know how to access a web service, let’s build a simple service. In the pre-
vious chapter, we talked about Rails, and as you’ll see later in this chapter, Rails is a
great framework for building web services. Yet, not all web services need a full-fledged
framework, and sometimes working close to the protocol (HTTP) is better, so in this
section we’ll show you a simple service built straight into the HTTP server.
Problem
You have an analytics console that you could use to monitor traffic across all servers in
the network. It works by pulling log files from each server and batch processing them.
To make it work with your server, you need to set up a simple service that provides all
the log files for a given day.
Solution
Ruby comes with a built-in web server called WEBrick, a simple and lightweight server
that is an adequate choice for development and prototyping. For production, though,
we recommend using Mongrel or Thin. Both are faster and more stable than WEBrick,
and you can use them as standalone servers, or to deploy a cluster of load-balanced
application servers behind Apache or Nginx.

 In this example, we’ll use Mongrel as a standalone server, and we’ll start by install-
ing it:

gem install mongrel

Next, we’ll define the LogService, which needs to implement a single method called
process, which handles the HTTP request and sets the response:

class LogService < Mongrel::HttpHandler
 def process(request, response)
 ...
 end
end

A request that ends with /YYYY-MM-DD retrieves all the log files for that particular day.
A request that ends with /last retrieves the last set of log files, which happens to be
yesterday’s date:

case request.params['PATH_INFO']
 when /^\/(\d{4}-\d{2}-\d{2})$/
 package $1, response
 when '/last'
 package (Date.today - 1).to_s, response
 else
 response.start 404 do |head, out|
 head['Content-Type'] = 'text/html'
 script = request.params['SCRIPT_NAME']
 out.write "<h1>Request URL should be #{script}/last "\
 " or#{script}/[yyyy]-[mm]-[dd]</h1>"
 end
end

Licensed to Manning Marketing <mkt@manning.com>

98 CHAPTER 5 Web services

If we get a request we cannot process, we return the 404 (Not Found) status code, but
we also include a short HTML snippet explaining the correct URL format. We do that
to help our users, since getting the request URL wrong is a common mistake.

 The package method will handle all valid requests, so let’s look at it next. We’re
going to use the RubyZip library:

gem install rubyzip

Strictly speaking, we want to create an empty zip file, add all the log files into it, use
default compression, and return that file to the client. We’re going to decide on the
zip filename first, and we’ll make sure to use a distinct filename for each day:

zip_filename = "logs-#{date}.zip"

We’re not going to create a file with that name. Imagine two requests coming at the
same time, attempting to write into the same zip file at once. Not good. So instead,
we’ll create a temporary file:

tmp_file = Tempfile.open(zip_filename)

Next, we’ll use RubyZip to add the log files:

Zip::ZipOutputStream.open(tmp_file.path) do |zip|
 Dir.glob("#{@path}/*-#{date}.log").each do |filename|
 zip.put_next_entry File.basename(filename)
 zip << File.read(filename)
 end
end

The glob method is named after the glob pattern, which we can use to match any
number of files. An asterisk (*) matches any filename or partial filename, a question
mark (?) matches any single character, and a double asterisk (**) matches directories
recursively. You can find a few more options in the Dir.glob documentation. Here
we’ll find all filenames that contain the date and end with the extension log, such as
errors-2007-10-05.log.

 Once we have created the zip file, we’ll return it to the client:

response.start 200 do |head, out|
 head['Content-Type'] = 'application/zip'
 head['Content-Length'] = File.size(tmp_file.path)
 head['Content-Disposition'] = %{attachment; filename="#{zip_filename}"}
 while buffer = tmp_file.read(4096)
 out.write buffer
 end
end

It’s a simple matter of returning the status code 200 (OK) and copying the file over to
the Mongrel response, which we do one block at a time to keep the service from eat-
ing up all available memory.

 We’re just about done. We have a Mongrel HttpHandler that responds to GET
requests by returning a zip file with all the log files for a given date, and we can use
that as a building block for a larger application that includes several services by simply

Licensed to Manning Marketing <mkt@manning.com>

99Using HTTP

registering the handler on a given URL. We’re not going to show you a larger applica-
tion here. Instead we’ll make it possible to run this service from the command line:

service = LogService.new(path)
puts "Starting Mongrel on port #{port}, serving log files from '#{path}'"
mongrel = Mongrel::HttpServer.new('0.0.0.0', port)
mongrel.register '/logs', service
mongrel.run.join

We set up the server to listen on IP 0.0.0.0, which means any network card including
localhost. You can also specify a specific IP address or host name, or only allow
requests from the same machine by listening to localhost (127.0.0.1).

 Let’s run the server:

ruby log_service.rb ~/logs
Starting Mongrel on port 3000, serving log files from '/home/assaf/logs'

To retrieve all the latest log files, simply open your browser and head over to http://
localhost:3000/logs/last.

 Now let’s merge all that code into a single file, shown in Listing 5.3.

require 'rubygems'
require 'mongrel'
require 'zip/zip'

class LogService < Mongrel::HttpHandler

 def initialize(path)
 @path = path
 end

 def process(request, response)
 unless request.params['REQUEST_METHOD'] == 'GET'
 return response.status = 405
 end
 case request.params['PATH_INFO']
 when /^\/(\d{4}-\d{2}-\d{2})$/
 package $1, response
 when '/last'
 package (Date.today - 1).to_s, response
 else
 response.start 404 do |head, out|
 head['Content-Type'] = 'text/html'
 script = request.params['SCRIPT_NAME']
 out.write "<h1>Request URL should be #{script}/last"\
 " or #{script}/[yyyy]-[mm]-[dd]</h1>"
 end
 end
 end

private

 def package(date, response)
 zip_filename = "logs-#{date}.zip"

Listing 5.3 A service for packaging log files and serving them as a zip file

Accepts only
GET requests

Determines
resource from
request path

Returns 404 if
resource not found

Licensed to Manning Marketing <mkt@manning.com>

100 CHAPTER 5 Web services

 tmp_file = Tempfile.open(zip_filename)
 begin
 Zip::ZipOutputStream.open(tmp_file.path) do |zip|
 Dir.glob("#{@path}/*-#{date}.log").each do |file|
 zip.put_next_entry File.basename(file)
 zip << File.read(file)
 end
 end
 response.start 200 do |head, out|
 head['Content-Type'] = 'application/zip'
 head['Content-Length'] = File.size(tmp_file.path)
 head['Content-Disposition'] = %{attachment;

➥ filename="#{zip_filename}"}
 while buffer = tmp_file.read(4096)
 out.write buffer
 end
 end
 ensure
 tmp_file.close!
 end
 end

end

if __FILE__ == $0
 unless path = ARGV[0]
 puts "Usage:"
 puts " ruby log_service.rb <log_dir> [<port>]"
 exit
 end
 port = ARGV[1] || 3000
 service = LogService.new(path)
 puts "Starting Mongrel on port #{port}, serving log files from '#{path}'"
 mongrel = Mongrel::HttpServer.new('0.0.0.0', port)
 mongrel.register '/logs', service
 mongrel.run.join
end

Discussion
This example shows you how to set up a simple web service without going the route of
a web framework. We do advocate using web frameworks when they help you get bet-
ter results with less work, and in the next section we’ll delve into RESTful services
using Rails. Sometimes, though, a web framework just gets in the way, and we wanted
to make you feel comfortable using the simplest solution for each situation.

 Another thing web frameworks do is hide, or abstract away, the HTTP protocol. In
our experience, you’ll do better if you learn how to use HTTP with all its richness,
whether you’re writing the code yourself, learning how to use a web framework, or
evaluating a library for use in your application. Our service only supports GET
requests, so we used the status code 405 (Method Not Allowed) to deny all other
HTTP methods. That status code tells the client exactly why his request was rejected.

 Along with the response, we sent three headers. The first, Content-Type, tells the cli-
ent the file type, and a web browser can use this information to open the file with the

Creates a temporary file

Uses RubyZip to
compress files

Returns successful
(200) response

Streams file
to the client

Discards
temporary file

Handles
command-line
arguments

Starts a new
Mongrel server

Licensed to Manning Marketing <mkt@manning.com>

101REST with Rails

right application. The second, Content-Length, tells the client how long the response
is, which is particularly useful for large responses, and for showing a progress bar of the
download. The HTTP protocol allows the server to close the connection once it’s done
sending the request, but if the connection drops (and sometimes it does), the client
doesn’t know whether or not it received the full response. The Content-Length header
gets around that problem. We also used the Content-Disposition header to suggest a
filename. Without this header, a request to /logs/last would attempt to download and
save a file called “last.” With this header, the browser will offer to save the file under a
name like logs-2007-10-05.zip.

 The last thing we did was send the request progressively, in blocks of 4,096 bytes.
That allows the client to start reading in, and if necessary, to start saving the response,
without waiting for the server to be done reading the file. It also saves the server from
loading the entire file, which could well be gigabytes of data, into memory. Paying
attention to these details will improve the performance and scalability of your applica-
tions, and the responsiveness of your web servers.

 Now that we have covered the basics of HTTP, we’re going to go one step further
and explore the REST style. We’ll show you how to create resources, handle multiple
representations, and use the uniform interface to build RESTful web services.

5.2 REST with Rails
So far, we’ve shown you how to build services and clients that use the HTTP protocol.
We’ll take this a step further now and show you how to build RESTful services using Rails.

 The Representational State Transfer (REST) architectural style is modeled after the
web. Basically, it codifies the principles and methods behind web servers that lead to
the creation of the largest distributed system ever built. For some people, “distrib-
uted” is about the plumbing—sending messages to remote servers. However, we’re
also thinking of the way large-scale systems emerge from smaller services built
independently by different groups of people—systems that are distributed in design
and in implementation.

 When we follow the REST style, we follow those same web principles: modeling our
services in terms of resources, making sure they are addressable as URLs, connecting
them by linking from one resource to another, handling representations based on con-
tent type, performing stateless operations, and so forth. In the following sections, we’ll
show an example using Rails. You’ll also quickly realize why we picked Rails for this task.

5.2.1 RESTful resources

Besides being the largest collection of useless information, personal opinions, and
short video clips, the web is also a large-scale system built from resources. Each page is
a resource identified by its URL. We use links to navigate from one resource to
another, and forms to operate on those resources. Applying these same principles, we
can build web services that are simple for both people and applications to use, and we
can wire them together to create larger applications.

Licensed to Manning Marketing <mkt@manning.com>

102 CHAPTER 5 Web services

Problem
You’re designing a task manager that your employees will use to manage their day-to-
day assignments. You’re also planning several applications and workflows that will cre-
ate and act upon these tasks. How can you design your task manager as a web service
that both people and applications can use?
Solution
Obviously one part of the solution is supporting programmable web formats like XML
and JSON, which we’ll handle in the next section. Before we get to deal with that, we
need to understand how to structure our resources so we can consume them from
web browsers and client applications.

 When we develop a web service, our aim is to build the service once and support
any number of clients that want to connect to it. The more client applications that can
reuse our service, the more we get out of the initial effort that goes into building that
service. We’re always on the lookout for those principles and practices that would
make our service loosely coupled and ripe for reuse. In this section, we’re going to do
just that by applying REST principles to a task manager.

 We’ll start by identifying the most important resources we need to provide. We
have one resource representing the collection of tasks, which we’ll make apparent by
using the URL path /tasks. And since we also plan to operate on individual tasks, we’ll
give each task its individual resources, and we’ll do so hierarchically by placing each
task in a resource of the form /tasks/{id}.

 We’ll handle all of these through the TasksController, so the first thing we’ll do is
define the resource so Rails can map incoming requests to the right controller. We do
that in the config/routes.rb file:

ActionController::Routing::Routes.draw do |map|

 # Tasks resources handled by TasksController
 map.resources :tasks
end

Retrieving the list of all tasks in the collection is done by the index action:

class TasksController < ApplicationController
 # GET on /tasks
 # View: tasks/index.html.erb
 def index
 @tasks = Task.for_user(@user_id)
 end

 ...
end

For individual tasks, we’re going to use the show action when the client asks to retrieve
that one task:

GET on /tasks/{id}
View: tasks/show.html.erb
def show
 @task = Task.find(params[:id])
end

Licensed to Manning Marketing <mkt@manning.com>

103REST with Rails

What else would we want to do with a task? We’ll want to change (update) it, and we’ll
need to offer a way to delete it. We can do all three on the same resource. We can use
HTTP GET to retrieve the task, PUT to update the task, and DELETE to discard it. So let’s
add two more actions that operate on a member task:

PUT on /tasks/{id}
def update
 @task = Task.find(params[:id])
 @task.update_attributes! params[:task]
 respond_to do |format|
 format.html { redirect_to:action=>'edit', :id=>task.id }
 format.xml { render :xml=>task }
 end
end

DELETE on /tasks/{id}
def destroy
 Task.find (params[:id]).destroy

 head :no_content
end

We got a bit ahead of ourselves. Before we can do all these things with a task, we need
some way to create it. Since we have a resource representing the collection of tasks,
and each task is represented by its own resource, we’re going to use HTTP POST to cre-
ate a new task in the collection:

POST on /tasks
def create
 task = Task.create!(params[:task])
 respond_to do |format|
 format.html { redirect_to:action=>'show', :id=>task.id}
 format.xml { render :xml=>@task, :status=>:created,
 :location=>url_for(:action=>'show', :id=>task.id) }
 end
end

We can now start to write applications that create, read, update, and delete tasks.
The beauty is that we’ve done it entirely using one resource to represent the collec-
tion and one resource to represent each member, and we’ve used the HTTP meth-
ods POST (create), GET (read), PUT (update), and DELETE (delete). When it comes
time to develop another service, say for managing users or orders, we can follow the
same conventions, and we can take what we learned from one service and apply it to
all other services.

 We’re not done, though. We want to expose this service to both people and appli-
cations. Our employees are going to use a web browser; they’re not going to send a
POST or PUT request, but do that using forms. So we need two forms: one for creating a
task, and one for updating an existing task. We can place those inside the task list and
individual task view respectively. For larger forms—and our tasks will require several
fields, taking up most of the page—we want to offer separate pages linked from exist-
ing view pages, so we’re going to offer two additional resources.

Licensed to Manning Marketing <mkt@manning.com>

104 CHAPTER 5 Web services

 From the tasks list, we’re going to link to a separate resource representing a form
for creating new tasks, and following our hierarchical design, we’ll assign it the URL
path /tasks/new. Likewise, we’ll associate each individual task with a URL for viewing
and editing it:

GET on /tasks/new
View: tasks/new.html.erb
def new
 @task = Task.new
end

GET on /tasks/{id}/edit
View: tasks/edit.html.erb
def edit
 @task = Task.find(params[:id])
end

Now it’s becoming clearer why we choose to lay out the resources hierarchically. If
you like tinkering with the browser’s address bar, try this: open the edit form for a
given task, say /tasks/123/edit, and change the URL to go up one level to the task
view at /tasks/123, and up another level to the tasks list at /tasks. Besides being a nice
browser trick, this setup helps developers understand how all the resources relate to
each other. This is one case where picking intuitive URLs is worth a thousand words
of documentation.

 So let’s pause and review what we have so far:

■ GET request to /tasks returns the list of all tasks.
■ POST request to /tasks creates a new task and redirects back to the tasks list.
■ GET request to /tasks/new returns a form that we can use to create a new task; it

will POST to /tasks.
■ GET request on /tasks/{id} returns a single task.
■ PUT request on /tasks/{id} updates that task.
■ DELETE request on /tasks/{id} deletes that task.
■ GET request on /tasks/{id}/edit returns a form that we can use to update an

existing task; it will PUT these changes to /tasks/{id}.

We didn’t get here by accident. We intentionally chose these resources so that we need
to keep track of only one reference (URL) to the tasks list and one reference to each
individual task. Helping us was the fact that we can use all four HTTP methods, which
already define the semantics of operations we can do against these resources. Notice
that while adding more actions to our controllers, we made no change to our routing
configuration. These conventions are a matter of practical sense, and Rails follows
them as well, so our one-line definition of the resource captures all that logic, and all
we had to do was fill in the actions.

 Next, we’re going to add a couple of actions that are specific to our task manager
and extend our resource definition to cover those.

 The first resource we’re going to add is for viewing the collection of completed
tasks. We can follow the same rules to add resources for viewing pending tasks, tasks

Licensed to Manning Marketing <mkt@manning.com>

105REST with Rails

scheduled to complete today, high-priority tasks, and so forth. We’re going to place it
at the URL path /tasks/completed.

 The second resource we’re going to add will make it easier to change task priority.
Right now, making a change to the task requires updating the task resource. We want
to develop a simple AJAX control that shows five colored numbers and sets the task
priority when the user clicks on one of those numbers. We’ll make it easy by providing
a resource to represent the task priority, so we can write an onClick event handler that
updates the resource priority directly. We’ll associate the priority resource with the
URL path /tasks/{id}/priority.

 Let’s add these two resources together and create the routes shown in listing 5.4.

ActionController::Routing::Routes.draw do |map|

 # Tasks resources handled by TasksController
 map.resources :tasks,
 :collection => { :completed=>:get },
 :member => { :priority=>:put }
end

Next, let’s add the controller actions to TaskController:

GET on /tasks/completed
View: tasks/completed.html.erb
def completed
 @tasks = Task.completed_for_user(@user_id)
end

PUT on /tasks/{id}/priority
def priority
 @task = Task.find(params[:id])
 @task.update_attributes! :priority=>request.body.to_i
 head :ok
end

Will it work? We certainly hope so, but we won’t know until we check. Rails resource
definitions are easy to work with, but we still occasionally make mistakes and create
something different from what we intended. So let’s investigate our route definitions
using the routes task:

$ rake routes

The output should look something like listing 5.5.

completed_tasks GET /tasks/completed {:action=>"completed"}
 tasks GET /tasks {:action=>"index"}
 POST /tasks {:action=>"create"}
 new_task GET /tasks/new {:action=>"new"}
completion_task PUT /tasks/:id/completion {:action=>"completion"}
 edit_task GET /tasks/:id/edit {:action=>"edit"}
 task GET /tasks/:id {:action=>"show"}

Listing 5.4 Defining our task manager resources in config/routes.rb

Listing 5.5 Routes for our RESTful tasks list

Licensed to Manning Marketing <mkt@manning.com>

106 CHAPTER 5 Web services

 PUT /tasks/:id {:action=>"update"}
 DELETE /tasks/:id {:action=>"destroy"}

The actual output is more verbose; we trimmed it to fit the page by removing the con-
troller name (no surprise, it’s always “tasks”) and the formatting routes, which we’ll
cover in the next section. You can see how each HTTP method (in the second col-
umn) and URL template (third column) map to the correct controller action (right-
most column). A quick peek tells us all we need to know.

 The leftmost column deserves a bit more explanation. Rails creates several friendly
looking routing methods that we can use instead of the catch-all url_for. For example,
since our tasks list needs a link to the URL for the task-creation form, we can write this:

<%= link_to "Create new task",
 url_for(:controller=>'tasks', :action=>'new') %>

Or, using the named-route method, we can shorten it to this:

<%= link_to "Create new task", new_task_url %>

Likewise, we could have the task list link to each task’s individual page:

<%= link_to task.title, task_url(task) %>

Or we can include a link for the task-editing form:

<%= link_to "Edit this task", edit_task_url(task) %>

We’re done, so let’s have a look at what our controller looks like with all the actions
brought together in one file. As we write it up, we’re going to make a couple of minor
tweaks. First, we’ll use named routes instead of url_for. Second, we’ll add a filter to
load the task into the controller, for the benefit of actions operating on individual
tasks. Listing 5.6 shows the resulting controller.

class TasksController < ApplicationController
 before_filter :set_task, :only=>[:show, :edit, :update,
 :destroy, :priority]

 def index
 @tasks = Task.for_user(@user_id)
 end

 def completed
 @tasks = Task.completed_for_user(@user_id)
 end

 def new
 @task = Task.new
 end

 def create
 task = Task.create!(params[:task])
 respond_to do |format|
 format.html { redirect_to task_url(task) }

Listing 5.6 Routes for our RESTful tasks list

Filters for actions
on individual tasks

Redirects browser
to task view

Licensed to Manning Marketing <mkt@manning.com>

107REST with Rails

 format.xml { render :xml=>task, :status=>:created,
 :location=>task_url(task) }
 end
 end

 def show
 end

 def edit
 end

 def update
 @task.update_attributes! params[:task]
 respond_to do |format|
 format.html { redirect_to edit_task_url(@task) }
 format.xml { render :xml=>@task }
 end
 end

 def priority
 @task.update_attributes! :priority=>request.body.to_i
 head :ok
 end

 def destroy
 @task.destroy
head :no_content
 end

private

 def set_task
 @task = Task.find(params[:id])
 end
end

Discussion
We showed you how to build a simple RESTful web service using Rails. However, there
are a few more things worth noting about this example and how we used Rails to apply
the principles of REST.

 One of the core principles of REST is the uniform interface. HTTP provides several
methods you can use on each resource; the four we’re showing here are POST (cre-
ate), GET (read), PUT (update), and DELETE (delete). They have clear semantics, and
everyone understands them the same way. Clients know what GET does and how it dif-
fers from DELETE, servers operate differently on POST and PUT, caches know they can
cache the response to a GET but must invalidate it on DELETE, and so forth. You can
also use that consistency to build more reliable applications; for example, PUT and
DELETE are idempotent methods, so if you fail while making a request, you can simply
repeat it. The uniform interface saves us from having to reinvent and document these
semantics for each and every application, and it helps that we can always do the same
thing the same way.

 Unfortunately, while we get this variety for the programmable web, web browsers
have not yet caught up, and some cannot properly handle PUT and DELETE. A common

Returns XML document
for new task

Associates
controller with
task from URL

Licensed to Manning Marketing <mkt@manning.com>

108 CHAPTER 5 Web services

workaround is to use POST to simulate PUT and DELETE by sending the real HTTP
method in the _method parameter. Rails understands this convention, and so do many
AJAX libraries like Prototype.js and jQuery, so you can safely use these with Rails to
keep your resources RESTful.

 You will notice, in our example, that when updating an existing resource (the
task), we respond to the PUT request with the default status code 200 (OK) and an
XML representation of the updated resource. On the other hand, when creating a
resource, we respond to the POST request with the status code 201 (Created), an XML
representation of the new resource, and the Location header. The latter tells the cli-
ent application that we just created a resource and where to find that resource, to
retrieve and update it later on. In both responses, we return a document that may be
different from the one we received, perhaps with added fields like id, version, and
updated_at. Either way, we’re using the full semantics of the HTTP protocol to distin-
guish between creating a resource and updating an existing one.

 People work differently from applications, however, and when responding to a web
browser, we need to consider the user experience. The way browsers work, if we simply
responded to a POST request with a render, and the user then refreshed the page, the
browser would make another POST request—the double-submit problem. We don’t
want that to happen, so we redirect instead. We also don’t need to send back a repre-
sentation of the resource, or its location; instead, we take the user back to the tasks lists.

 You may be wondering, what happens if someone makes a request to /tasks/456, but
there is no such task? Clearly this should return a 404 (Not Found) response, yet we
show no such thing in our example. One way in which Rails simplifies deployment is by
taking care of all these details and applying default behavior, so you don’t have to worry
about it unless you want to change the way it behaves. So we let Rails figure it out.

 When we call Task.find and it can’t find a task with that identifier, it throws an
ActiveRecord::RecordNotFound exception. Rails catches this exception and maps it
to the 404 (Not Found) status code. The default behavior is to send back a static page
that you can find (and customize to your application) in public/404.html.

 Likewise, if we tried to create or update a task by sending a field it doesn’t under-
stand, such as an XML document with the element <address> (our tasks don’t have
an address field), Rails will throw an ActiveRecord::RecordInvalid or Active-
Record::RecordNotSaved exception. It will then catch this exception and map it to
a 422 (Unprocessable Entity) status code.

 Rails similarly deals with unsupported content types by returning 406 (Not Accept-
able), which we’ll put into action in the next section. You can add your own logic for
catching and dealing with these exceptions, and you can introduce your own excep-
tion and handling logic. Have a look at ActionController::Rescue, particularly the
rescue_from method.

 One common mistake web developers make is storing a copy of an object in the
session, like this:

Task.find_by_user(session[:user])

Licensed to Manning Marketing <mkt@manning.com>

109REST with Rails

What’s wrong with this code? Updating the user’s record in the database, or even
deleting it, will not update the session, and the session will keep using stale data. It is
much better to store the record identifier, which doesn’t change, and access the
record as necessary. The common alternative looks like this:

Task.find_by_user_id(session[:user_id])

This code works better, as long as you’re using sessions. When developing applications
that use a web service, it’s much easier to work with HTTP Basic Authentication, as
we’ve shown in the previous sections. It’s easier to use than going through a custom
login form and then carrying the session cookie around.

 Fortunately, it’s a trivial matter to write controllers that support both means of
authentication. Simply add a filter that can use HTTP Basic Authentication or the ses-
sion to identify the user, and store their identifier in the @user_id instance variable.
We recommend doing that in ApplicationController, which is why we’re not show-
ing this filter in our example.

 We talked about the ease of mapping resources for CRUD (create, read, update,
delete) operations. Resource mapping is another area where we encourage you to
explore more. You can take hierarchical resources one step further and create nested
resources, such as /books/598/chapters/5. You can use the to_param method to cre-
ate more friendly URLs, such as /books/598-ruby-in-practice/chapters/5-web-services.
Also, have a look at some of the form helper methods that will generate the right form
from an ActiveRecord object, using the most suitable resource URL. This combination
will not only make it easier to develop web applications, but also help you do the right
thing from the start.

 When building RESTful web services, another thing we have to deal with are multi-
ple content types. We briefly touched upon this, using HTML for end users and XML
for applications, and in the next section we’ll explore it further, adding support for
JSON and Atom.

5.2.2 Serving XML, JSON, and Atom

Every resource has a representation. In fact, a given resource can have more than one
representation. Users accessing our task manager will want to see an HTML page listing
all their tasks, or they may choose to use a feed reader to subscribe to their task list, and
feed readers expect an Atom or RSS document. If we’re writing an application, we
would want to see the tasks list as an XML document or JSON object, or perhaps to pull
it into a calendar application in the form of an iCal list of to-dos and events.

 In this section, we’re going to explore resources by looking at multiple representa-
tions, starting with HTML and adding XML, JSON, and Atom representations for our
tasks list.
Problem
As you’re building your task manager, you realize you need to support a number of cli-
ents, specifically feed readers and programmable clients, by adding XML, JSON, and
Atom representations to the tasks list.

Licensed to Manning Marketing <mkt@manning.com>

110 CHAPTER 5 Web services

Solution
One reason we recommend Rails for building web services is the ease of adding differ-
ent representations for the same underlying resource. So let’s start with a simple
action that displays the current task list in one of several formats:

def index
 @tasks = Task.for_user(@user_id)
end

Since most Rails examples look like this and only support HTML, we won’t fault you
for thinking this example shows just an HTML output, but in fact it supports as many
formats as we have views. When you leave it up to Rails to render the response, it tries
to find a suitable view based on the action name and expected format. If we wrote a
view called index.html.erb, Rails would use it to render HTML responses. If we added
a view called index.xml.builder, Rails would use this one to render XML responses. For
Atom, we would use index.atom.builder, and for iCal, index.ics.erb.

 Notice the pattern here? The first part tells Rails which action this view represents,
the second part tells it which format it applies to, and the last part tells it which tem-
plating engine to use. Rails comes with three templating engines: ERB (eRuby), Builder,
and RJS. This is a new feature introduced in Rails 2.0. Earlier versions were less flexible,
and always matched a combination of format and templating engine, so for HTML it
would default to ERB by looking up the view index.rhtml, and for XML it would default
to Builder by looking up the view index.rxml. Rails 2.0 gives you more flexibility in mix-
ing and matching formats and templating engines, and also makes it easier to add new
template handlers (for example, for using Liquid templates or HAML).

 In a moment, we’re going to show you Builder, when we use it to create an Atom
feed for our tasks list. For XML and JSON, we’re not going to go through the trouble of
creating and maintaining a custom view. Instead we’ll let ActiveRecord do a trivial
transformation of our records into an XML document or a JSON object:

def index
 @tasks = Task.for_user(@user_id)
 case request.format
 when Mime::XML
 response.content_type = Mime::XML
 render :text=>@tasks.to_xml
 when Mime::JSON
 response.content_type = Mime::JSON
 render :text=>@tasks.to_json
 when Mime::HTML, Mime::ATOM
 # Let Rails find the view and render it.
 else
 # Unsupported content format: 406
 head :not_acceptable
 end
end

The preceding code shows the long way of doing things. You can see the short way to
respond with different content types in listing 5.7.

Licensed to Manning Marketing <mkt@manning.com>

111REST with Rails

def index
 @tasks = Task.for_user(@user_id)
 respond_to do |format|
 format.html
 format.atom
 format.xml { render :xml=>@tasks }
 format.json { render :json=>@tasks }
 end
end

We’re using the respond_to method to match each format we support with the logic to
render it. It’s similar to the case statement in the previous code example, but simpler
to specify and more declarative. We’re also letting the render method do all the hard
work by asking it to convert the array into an XML document or JSON object and to set
the Content-Type header appropriately. It’s shorter to write and easier to maintain.

 Now it’s time to handle the Atom view, for which we’ll create a view file called
index.atom.builder, as shown in listing 5.8.

atom_feed do |feed|
 feed.title "My tasks list"
 feed.updated @tasks.first.created_at

 @tasks.each do |task|
 feed.entry task do |entry|
 entry.title task.title
 entry.content task.description, :type => 'html'
 end
 end
end

The call to atom_feed creates an XML document with the right wrapping for a feed,
including the XML document type declaration, feed element with ID, and alternate
link back to our site. It also creates an AtomFeedBuilder object and yields to the block.
From the block, we’re going to create the feed title, specify the last update, and add
all the feed entries.

 We now have a tasks resource that responds to GET and returns the task list in dif-
ferent content types: HTML for web browsers, Atom for feed readers, and either XML
or JSON for client applications.
Discussion
The HTTP protocol allows clients to request data in a particular format using content
negotiation. When the client sends a request to the server, it uses the Accept header
to indicate all the content types it supports in order of preference. The server can pick
the most suitable content type and use it when responding to the client. If the server
doesn’t support any of the listed content types, it simply responds with 406 (Not
Acceptable). Another status code, 415 (Unsupported Media Type), tells the client that
the server does not support the content type of a POST or PUT request.

Listing 5.7 Responding with different content types

Listing 5.8 An Atom feed for our tasks list

Sets instance
variable for use
in templatesRenders HTML/Atom using

appropriate template

Renders XML/JSON
document from object

Sets feed title and
updates timestamp

Produces one
feed entry for
each task

Licensed to Manning Marketing <mkt@manning.com>

112 CHAPTER 5 Web services

 That’s the basic idea behind content negotiation. In some cases, it’s clearly the
right thing to do. We can use one resource URL and send it to all our clients, and each
client can see a different representation of the same resource. A web browser will see
an HTML page, a feed reader will see an Atom feed, and other applications may see
XML or CSV.

 Another approach uses different resource URLs for each representation. Some
people prefer this approach, since it allows you to manage different representations.
For example, if you want to download a CSV document using a web browser, you need
a URL that will always send back a CSV document.

 There is no one best way to construct these URLs, but there are two common con-
ventions. One adds a query parameter that indicates the expected content type. For
example, you can decide to use the format query parameter, and use a URL like
/tasks?format=xml. Another convention is to use an extension suffix on the URL path,
such as /tasks.xml. We recommend using the extension suffix for the simple reason
that saving the document with a web browser will retain the suffix, and a file called
tasks.xml will always open in the right application.

 How does Rails handle this? When we use the built-in mechanism to decide on
the content type, as we did in listing 5.7, Rails picks up the expected format from the
format query parameter, or from the URL path suffix, or from the Accept header, in
order of preference. Which way you request different content types is up to you—a
Rails application can support all three.

 You’ll notice that in listing 5.6, when we wrote an action to create a new task, we
did this:

Task.create!(params[:task])

Multiple representations work both ways. If we can create a response and send back an
XML document, we had better be able to process a request by accepting the same XML
document. When Rails processes an XML request, it converts the XML document into
a Hash, using the document element’s name for the parameter name. The preceding
example expects the document to contain the element <task> and passes the Hash
to ActiveRecord.

 It works the same way for HTML forms, if you follow the simple naming guidelines
set by Rails. In our forms, we will have fields like task[title] and task[priority].
Rails uses this naming convention to figure out how the fields relate to each other,
and turns them into a Hash parameter, so we can use the same line of code to process
an XML document or the submission of an HTML form.

 It helps that we’re using Rails’ form helper methods:

<% form_for @task do |f| %>
 <%= f.text_field :title %>
 <%= f.text_field :priority %>
<% end %>

The form_for creates the <form> element, figures out the action URL, and takes care
to map the field names from title to task[title]. Give it a new record and it will

Licensed to Manning Marketing <mkt@manning.com>

113REST with Rails

point the form to the URL for creating a new resource (tasks_url, POST method);
give it an existing record and it will point the form to the URL for updating an existing
resource (task_url(@task), PUT method). That is why we used Task.new to render
the form in the new action: we can use a single template to both create and update a
record. Rails comes with built-in support for HTML forms, XML, JSON, and YAML, and
if that’s not enough, you can always add custom parameter parsers. Have a look at
ActionController::Base.param_parsers for more information.

 In listing 5.8 we showed you how to use AtomFeedBuilder, a templating mecha-
nism for generating Atom feeds. AtomFeedBuilder itself extends the more generic
XML templating mechanism provided by Builder::XmlMarkup. Let’s take a moment
to look at Builder and what you can do with it.

 Builder is a simple templating mechanism for creating XML documents from Ruby
code. Because it always produces well-formed documents, some developers even use it
to generate XHTML pages. It’s available as a gem you can use in any application that
needs to generate XML, and it’s also included as part of Rails. Builder is very simple to
understand and intuitive to use, and it’s a good example of what can be done with a
little bit of metaprogramming.

 When you call a method on a Builder object, it takes the method name and uses it
to create an XML element with the same name. This is done through method_missing,
and there is no need to specify any of these methods in advance. AtomFeedBuilder
only specifies a few methods that do a lot more than just generate an XML element, so
it defines entry but doesn’t bother to define title or content.

 As you can imagine from this example, passing a string argument to a Builder
object will use that value for the element content, a hash argument specifies the ele-
ment’s attributes, and blocks are used to nest one element within another.

 Besides these, there are some special methods you can call, such as tag! to create
an element with a given name (for example, to handle special characters or
namespaces), text!, cdata!, comment! (each of which do exactly what you think they
would), and instruct! to create the XML declaration at the top of the document.

 We mentioned before that you can use different URLs for the various response rep-
resentations. When we defined the tasks resource, Rails created several named route
methods like tasks_url and task_url. What we didn’t show before is that, in addi-
tion, Rails created named route methods that accept a format and return a URL that
specifies that output format in the form of a path suffix. These method names start
with formatted_ and accept an additional argument that specifies the output format,
and they will show up when you run the rake routes task. Let’s add a link that users
can use to subscribe to the Atom feed, using a named route:

<%= link_to "Subscribe", formatted_tasks_url(:atom) %>

In this section, we showed you how to build a RESTful web service. But what if you
want to access that service from another application? In the next section, we’ll talk
about ActiveResource, Rail’s way of accessing remote resources using an ActiveRecord-
like API.

Licensed to Manning Marketing <mkt@manning.com>

114 CHAPTER 5 Web services

5.2.3 Using ActiveResource

We started this chapter by showing you how easy it is to use open-uri and Net::HTTP.
Well, easy is a relative term. Building a client library to access our task manager service
will still require a fair amount of boilerplate code—more than we care to write, test,
and maintain. We also showed you some principles and conventions for designing
RESTful web services. In this section, we’ll take it a step further and show you how we
can use them to develop a client library for the task manager using ActiveResource.
Problem
Now that the task manager service is up and running, you need to develop your work-
flow application. As part of that application, you’ll need to create and manage tasks.
You want to reuse our task manager service, and you want to get it done before the day
is over.
Solution
We’ll build a client application that uses ActiveResource to access the task manager
service. We’ll start by writing a class to represent the resources for handling a task list
and individual tasks:

class Task < ActiveResource::Base
 self.site = 'https://john:secret@taskmanager.example.com/'
end

Remember from section 5.1.2, we’re using the URL to specify the username and pass-
word for accessing the service, and these map to HTTP Basic Authentication, using
HTTPS when we need to access it over public networks.

 We’ve not yet implemented a single method in our new Task class, but let’s first see
what we can do with it. Let’s start by creating a new task:

task = Task.create(:title=>'Read about ActiveResource', :priority=>1)
puts 'Created task #{task.id}'
=> 'Created task 1'

Method_missing and BlankSlate
Builder uses method_missing in an interesting way. Ruby’s objects use method
passing—when you call a method on an object, Ruby first tries to match it against a
known method definition, and if it doesn’t find any method, passes it on to the ob-
ject’s method_missing. The default implementation throws NoMethodError. Build-
er, on the other hand, uses method_missing to catch method calls and convert them
into XML elements, so we don’t need to declare an XML Schema or build any skeleton
objects to get this simple creation of XML documents from Ruby code.

Existing object methods may clash with XML element names; for example, names like
id and type are commonly used as element names. To solve that, Builder uses
BlankSlate, a class that has most of its standard methods removed. (In Ruby 1.9
you can achieve the same using BasicObject.)

Licensed to Manning Marketing <mkt@manning.com>

115REST with Rails

Doesn’t this code look very familiar? We’re using ActiveResource here to operate
against remote resources, but the patterns are the same as in the previous section,
where we used ActiveRecord to access the database.

 Let’s see what happens behind the scenes of the create method:

task = Task.new
task.title = 'Read about ActiveResource'
task.priority = 1
task.save

It starts by creating a new object in memory and setting its attributes, and it saves the
object by making a POST request to the resource /tasks, with an XML document
containing the task definition. Our simple implementation, you may recall from sec-
tion 5.2.1, receives the XML document, parses the attributes, and uses them to create a
record in the database. It then tells the client what the new task resource is, which is
all our ActiveResource needs to know.

 Let’s follow up by updating the task:

task.title << ' and try this example'
task.save

This time, since the task already exists, we make a PUT request to the resource and
updated it. So we can create and update resources. We can also read and delete them:

task = Task.find(1)
task.delete
tasks = Task.find(:all)
Task.delete(tasks.first.id)

All of this is just a matter of conventions. ActiveResource follows the same conventions
we used when we built the task manager service, so we got all this functionality just by
specifying a URL.

 How do we know our Task class sends requests to the right URL? We assumed it
uses XML by default, but is there a way to find out for sure? Let’s try the equivalent of
the rake routes task:

puts Task.collection_path
=> /tasks.xml
puts Task.element_path(1)
=> /tasks/1.xml

We built our task manager around all the common patterns, but we also added two
resources specific to our task manager. We had one resource for listing all the com-
pleted tasks, and we’ll want to use that from our client as well. Let’s list those tasks:

Task.find(:all, :from=>:completed)

As you can guess, this is just a request against the /tasks/completed.xml path. We also
had a resource for quickly updating the task priority, which we designed to support
our AJAX controls. Let’s try to use that as well:

task.put(:priority, nil, 5)

Licensed to Manning Marketing <mkt@manning.com>

116 CHAPTER 5 Web services

This time, the request goes to /tasks/{id}/priority, substituting the task identifier in
the URL template. The put method takes two additional arguments, the first being a
hash that is passed along as query string parameters, and the second being the body of
the message. Remember from section 5.2.1, we’re passing a priority number in the
body of the message.

 As you might expect, there are other custom methods you can use, like get, post,
and delete. We’re going to hide the details of put from the application by wrapping it
in a method; in fact, we’ll add a couple more to create an ActiveResource class that
represents our task manager service. The result is shown in listing 5.9.

class Task < ActiveResource::Base
 self.site = 'https://taskmanager.example.com/'

 def self.completed
 find(:all, :from=>:completed)
 end

 def self.update_priority(id, value)
 Task.new(:id=>id).priority!(value)
 end

 def priority!(value)
 put(:priority, nil, value.to_i)
 end
end

Now let’s try it out by running this snippet using script/console:

Task.site.user_info = 'john:secret'

puts 'Completed tasks'
Task.completed.map { |task| task.id }.to_sentence
=> "1, 2 and 3"

puts 'Changing priority for task 123'
Task.update_priority(123, 5)
Task.find(123).priority
=> 5

Discussion
As you’ve seen from our examples, Rails makes it extremely easy to build web services
that follow the REST principles and work equally well with web browsers and the pro-
grammable web. In fact, a lot of that simplicity comes directly from following these
principles. We didn’t have to tell our client how to create, read, update, or delete the
resource—those all followed from using the proper HTTP methods. All we had to do
is point our client at the right place. Likewise, we didn’t have to build two different
task manager applications for people and for applications. We managed both at the
same time by using different content types.

 If you follow Rails conventions, you get the basic CRUD operations for free. In
practice, that’s often not enough, and you’ll find that you need more specific
resources and you’ll need to layer additional actions into your controllers. We showed

Listing 5.9 Using our task manager with ActiveResource

Sets the tasks
service URL

Returns completed tasks

Updates task priority

Updates task priority
on current resource

Licensed to Manning Marketing <mkt@manning.com>

117SOAP services

you how easy it is to add these custom methods on both the server and the client sides.
There are, of course, other things you’ll need to do. A fully functional task manager
would need to handle deadlines and exceptions, send notifications, and even spawn
workflows that would involve even more tasks and interact with other services. Those
are all possible to do within the constraints of REST; unfortunately, it’s more than we
can show in the limited span of one chapter.

 In the last three solutions, we have talked extensively about Rails, but we want you
to take their general principles home with you even if you use other web frameworks
or programming languages. The first principle was the recommended practice of
building RESTful web services and the benefits that come from following the REST
architectural style. The other was the benefit of picking up on conventions, which can
help you design better, develop faster, and end up with code that’s easier to under-
stand and maintain. If nothing else, there will be less to document. Conventions are
not just for Rails; when you’re building your own applications, think how conventions
could help you work less and get more done.

 The SOAP messaging protocol is another way to harness the HTTP protocol and
build services that cross languages, platforms, and applications. In the following sec-
tions, we’ll turn our attention to SOAP using the built-in SOAP4R library.

5.3 SOAP services
When it comes to talking with J2EE, .Net, and legacy applications, the first option that
comes to mind is SOAP. And yes, Ruby does come with a SOAP stack called, not surpris-
ingly, SOAP4R.

 SOAP4R supports SOAP 1.1 with attachments, and service definitions specified
using WSDL 1.1. Security options include HTTP Basic Authentication, SSL/TLS, and a
separate library that covers WS-Security (WSS4R). SOAP4R participates in interoperabil-
ity testing, and if you’re working at the level of WS-I Basic Profile compliance, you can
expect it to work with the various Java SOAP stacks (Axis, Glue, CXF), .Net, and others.

 In the next two sections, we’ll cover the basics of using SOAP4R as we implement a
simple task manager service and a client application to invoke it.

5.3.1 Implementing the service

The appeal of the SOAP protocol is in crossing language and platform boundaries, so
there’s no need to build the service in Ruby in order to use it from Ruby. We can easily
imagine the task manager being a service implemented in Java and the client applica-
tion in Ruby, or the other way around. Regardless, we want to make this chapter self-
contained, so we’re going to show you how to implement the service in Ruby, and also
how to invoke it using Ruby.

 We’re picking up on the same task manager service we developed in the previous
sections of this chapter, but this time using SOAP instead of REST.
Problem
You need to develop a task manager service that you can use from a variety of client
applications using the SOAP messaging protocol.

Licensed to Manning Marketing <mkt@manning.com>

118 CHAPTER 5 Web services

Solution
We recommend contract-first service development. In our experience, it leads to
more robust services that are easier to reuse and maintain. In contract-first, we start by
specifying the functionality offered by the service, typically in the form of human-
readable documentation and a WSDL service definition. Once that’s done, we use the
service definition to start building the service implementation and any applications
that need to invoke the service. In fact, once we have a service definition, we can
branch off to develop both pieces in parallel.

 We also prefer document style with literal encoding, fondly known as doc/lit, which
makes it easier to evolve the service definition over time, so we’re going to use that for
our service definition. Since WSDL is verbose and we only have so much space in this
book, we’ll keep our example to the bare minimum. We’ll build our service to support
a single operation, for creating a new task, and only care about two parameters, the
task title and priority.

Figure 5.1 shows a simple outline of the service definition, visualized using Eclipse
Web Service Toolkit. It was generated from the WSDL document given in listing 5.10.

<?xml version="1.0" encoding="utf-8"?>
<definitions name='taskService'
 targetNamespace='http://example.com/taskManager'
 xmlns='http://schemas.xmlsoap.org/wsdl/'
 xmlns:tns='http://example.com/taskManager'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'>
 <types>
 <xsd:schema elementFormDefault='unqualified'
 targetNamespace='http://example.com/taskManager'>
 <xsd:element name='createTask'>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name='title' type='xsd:string'/>
 <xsd:element name='priority' type='xsd:int' minOccurs='0'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name='createTaskResponse'>
 <xsd:complexType>
 <xsd:sequence>

Listing 5.10 WSDL describing our task manager service

Figure 5.1 Simple task manager service

Licensed to Manning Marketing <mkt@manning.com>

119SOAP services

 <xsd:element name='id' type='xsd:string'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>

 <message name='createTask'>
 <part name='task' element='tns:createTask'/>
 </message>
 <message name='createTaskResponse'>
 <part name='task' element='tns:createTaskResponse'/>
 </message>

 <portType name='taskManagement'>
 <operation name='createTask'>
 <input message='tns:createTask'/>
 <output message='tns:createTaskResponse'/>
 </operation>
 </portType>

 <binding name='taskManagementDocLit' type='tns:taskManagement'>
 <soap:binding transport='http://schemas.xmlsoap.org/soap/http'
 style='document' />
 <operation name='createTask'>
 <soap:operation style='document' />
 <input>
 <soap:body use='literal'/>
 </input>
 <output>
 <soap:body use='literal'/>
 </output>
 </operation>
 </binding>

 <service name='taskService'>
 <port name='docLit' binding='tns:taskManagementDocLit'>
 <soap:address location='http://localhost:8080/'/>
 </port>
 </service>
</definitions>

Like any full-featured stack, SOAP4R allows us to work directly with SOAP messages
using the low-level SOAP object model, and to do our own routing between incoming
messages and application components. Even for our simple example, doing that
would be tedious, so instead we’ll use the WSDL service definition to create a service
skeleton and extend it with the application logic.

 We’ll start by creating a working directory for the server side, and run the
wsdl2ruby.rb command-line tool to create the service skeleton files:

$ mkdir server
$ cd server
$ wsdl2ruby.rb --wsdl ../taskService.wsdl --type server --module TaskManager

Now let’s have a look at the generated files.

Licensed to Manning Marketing <mkt@manning.com>

120 CHAPTER 5 Web services

 The first file, taskService.rb defines a class called TaskManagement. The name
comes from the portType, and you will notice that SOAP4R capitalizes the first letter,
since Ruby class names are CamelCase. It defines a single operation for creating a new
task. When you look at the source code, you will notice that it specifies the input and
output messages with all their message parts (one each, in this case), the declared
faults (of which we have none), and the document encoding in use. All that informa-
tion comes from the WSDL document and is used to configure SOAP4R.

 The second file, taskServiceMappingRegistry.rb defines mapping between the XML
elements used in the messages and the Ruby classes holding that data. As SOAP mes-
sages come in, they get converted into Ruby objects that our application can easily
handle. In this case, the createTask element is parsed to instantiate a CreateTask
object. Likewise, the CreateTaskResponse object we return from the method will con-
vert into a createTaskResponse element to be sent back in the response message.

 Notice that this file contains two mapping registries, one called EncodedRegistry
(SOAP encoding) and one called LiteralRegistry (literal encoding). Since we specified
doc/lit, only the second mapping is defined and used.

 The third file, taskServiceServant.rb contains the actual service skeleton. SOAP4R
refers to it as “servant,” which simply means the logic behind the service interface.
The file defines a single method in the TaskManagement class that returns a fault. It’s
this skeleton file that we’re going to fill up with application logic to implement the
task manager service.

 We’re going to keep this example very simple. We’ll specify a couple of classes,
CreateTask and CreateTaskResponse, to hold the request and response messages, and
implement the createTask method to create a new task record in the database and
return the task identifier. You can see the full service implementation in listing 5.11.

require 'taskService'

class Task < ActiveRecord::Base
end

module TaskManager

 # {http://example.com/taskManager}createTask
 class CreateTask
 attr_accessor :title, :priority
 end

 # {http://example.com/taskManager}createTaskResponse
 class CreateTaskResponse
 attr_accessor :id

 def initialize(id)
 @id = id
 end
 end

 class TaskManagement

 def createTask(request)

Listing 5.11 Our task manager servant

Represents XML
message as Ruby object

Represents XML
message as Ruby object

Implements
TaskManagement
port type Implements

createTask
operation

Licensed to Manning Marketing <mkt@manning.com>

121SOAP services

 task = Task.create :title=>request.title, :priority=>request.priority
 return CreateTaskResponse.new(task.id)
 end

 end

end

The common practice is building a number of services (or servants) and configuring
a web server to host them all, exposing each one on a different endpoint URL. For this
example, though, we only have one service, so we’ll use the quick prototype stand-
alone server provided by taskService.rb. In addition to the service definition, this file
defines a standalone server application called TaskManagementApp. The only thing we
need to do is start it (see listing 5.12).

$KCODE = 'UTF-8'
require 'rubygems'
require 'soap/driver'
require 'taskService'

Configure ActiveRecord database connection
config = YAML.load(File.read('database.yaml'))
ActiveRecord::Base.establish_connection(config)

Configure the server
server = TaskManager::TaskManagementApp.new 'TaskManager',
 'http://example.com/taskManager', '0.0.0.0', 8080
Shutdown when interrupted (Ctrl-C)
trap(:INT) { server.shutdown }
Start the server
server.start

We’re almost ready to run. We’re using ActiveRecord to access the database, so we also
need to specify the database connection configuration. We’ll do that in a separate file
called database.yaml, which for our database setup looks like this:

adapter: mysql
host: localhost
username: dev
password: dev
database: task

Listing 5.12 A simple task manager SOAP service

Uses UTF-8 all around

Requires SOAP4R

Loads configuration for
ActiveRecord connections

Creates new server,
sets endpoint

Catches Ctrl-C, stops server

Starts processing SOAP requests

Using ActiveRecord outside of Rails
ActiveRecord is a key piece of the Rails puzzle and provides the model part of the
Model-View-Controller (MVC) design pattern, mapping Ruby objects to database tables.
It’s also an outstanding object-relational mapping framework on its own, and you can,
as many developers do, use it outside of Rails. All it takes is installing the ActiveRecord
gem, requiring it from your application, and using establish_connection to configure
the database connection.

Licensed to Manning Marketing <mkt@manning.com>

122 CHAPTER 5 Web services

Now let’s start the server:

$ ruby server.rb

We’ll write a client application that uses this service in the next section, so keep the
service running and you can test the client application against it.
Discussion
We showed you how easy it is to get started developing SOAP services with Ruby.
Before we move to the next section, there are a few more things you’ll need to know
when building real live services.

 SOAP4R comes in two flavors. It’s part of the Ruby standard library available in your
Ruby installation, and it is also available as a packaged gem that you can install from
the public gem repository at http://RubyForge.org.

 Like any standard library, SOAP4R gets updated with major releases of the Ruby run-
time, and as we’re writing this book, Ruby 1.8.6 is the predominant runtime shipping
with SOAP4R 1.5.5. The gem version is updated more frequently and is currently at ver-
sion 1.5.8 and pushing toward 1.6. We recommend you stay up with the latest enhance-
ments and bug fixes by installing and using the SOAP4R gem in your environment.

 If your service is sending and receiving text in languages other than English, you
should consider using UTF-8 encoding. In our experience, it is far easier to use UTF-8
encoding all around than to switch encoding for each document or message. The
Ruby global variable $KCODE specifies the default encoding used by the runtime, and
SOAP4R picks up on it as the default encoding, so make sure to set $KCODE to UTF8
before requiring SOAP4R.

 Our example was simple enough that we wrote the XML Schema type definitions
inline, but for larger services you’ll want to create separate type libraries and reuse
these definitions across multiple services. This is fairly easy to do by aggregating them
into XML Schema documents and importing those documents into various WSDLs.
You will also want to use another SOAP4R tool called xsd2ruby.rb to read these XML
Schema documents and create XML/Ruby mapping files, which you can then reuse in
your code.

 We did rapid prototyping by letting SOAP4R create a simple standalone server that
uses WEBrick, the default web server that ships with Ruby. That’s good enough for
development and testing, but for production you should consider using Mongrel
instead. The easiest way is to install the mongrel-soap4r gem, which lets you configure
Mongrel for hosting SOAP4R services.

 We cannot complete this section without mentioning ActionWebService. It’s a
lightweight framework on top of SOAP4R designed specifically for use inside Rails
applications. It’s particularly useful if you want to expose SOAP services as part of a
Rails application, and it lets you implement the service operations inside your control-
lers. You can also use it to invoke SOAP services from within a Rails application.

 ActionWebService is also a good fit if you prefer code-first service development
and want to define your services from working code. It has a simple, declarative
API that feels very similar to the annotations used in J2EE and .Net. We like the

Licensed to Manning Marketing <mkt@manning.com>

http://RubyForge.org

123SOAP services

ActionWebService API, but we prefer contract-first design, especially when using SOAP
across different languages and platforms, which is why we wrote this example using
WSDL and SOAP4R.

 Now let’s turn our attention to service invocation and write a SOAP client to invoke
the task manager service.

5.3.2 Invoking the service

The promise of services is reuse, which emphasizes the client side of the application. In
this section, we’ll show you how to write a client application to use the task manager ser-
vice, and not surprisingly, it will be easier and quicker to write than the service itself.
Problem
You want to develop a client application that can use the task manager service
described in the WSDL document.
Solution
In the previous section, we showed you how to use SOAP4R and a WSDL file to imple-
ment a simple task manager service. In this section, we’ll use the same WSDL docu-
ment to create two clients for that service.

 SOAP4R refers to client stubs as “drivers,” and for legacy reasons the base class for
all drivers is called SOAP::RPC::Driver. But don’t get confused—that same driver will
also support doc/lit services like the one we’re using here.

 Since we already have a WSDL service definition, we’ll use WSDLDriverFactory to
create a new driver for the task manager service:

wsdl = File.expand_path('taskService.wsdl')
SOAP::WSDLDriverFactory.new(wsdl).create_rpc_driver

The driver reads the WSDL service definition and adds all the operations available to
the service, along with the endpoint URL and protocol bindings, so we can immedi-
ately begin using it. Messages are mapped from their internal SOAP representation to
Ruby hashes:

response = driver.createTask(:title=>'Learn SOAP4R', :priority=>1)
puts "Created task #{response['id']}"

That’s all there is to it. We can start adding more operations to our WSDL, create more
complex message definitions, all the while using the same basic patterns. You can see
the entire client application in listing 5.13.

$KCODE = 'UTF-8'
require 'rubygems'
require 'soap/driver'
require 'soap/wsdlDriver'

wsdl = File.expand_path('../taskService.wsdl')
driver = SOAP::WSDLDriverFactory.new(wsdl).
 create_rpc_driver

Listing 5.13 Task manager client using WSDLDriver

Uses UTF-8 all around

Requires SOAP4R
client library

Creates SOAP client
from WSDL file

Licensed to Manning Marketing <mkt@manning.com>

124 CHAPTER 5 Web services

response = driver.createTask(:title=>'Learn SOAP4R',
 :priority=>1)
puts "Created task #{response['id']}"

SOAP::RPC::Driver can also map SOAP messages to and from Ruby objects, and when
working with larger and more complex operations we prefer that, so the next step is to
generate these mappings. Instead of doing it ourselves, we’ll turn again to the
wsdl2ruby.rb command-line tool:

$ mkdir client
$ cd client
$ wsdl2ruby.rb --wsdl ../taskService.wsdl --type client --module TaskManager

Let’s have a look at the generated files.
 The first file, taskService.rb, defines Ruby classes to represent each element we use

in our messages, so in the source code are ready definitions for CreateTask and
CreateTaskResponse.

 The second file, taskServiceMappingRegistry.rb, specifies the mapping between
XML elements and these Ruby classes. We covered that mapping in the previous sec-
tion, when we showed how it is used by the service.

 The third file, taskServiceDriver.rb, defines TaskManagement, again using the
portType name for the class name, with the single operation we defined in the WSDL.
It also includes a basic driver implementation that loads all the mappings and remem-
bers the default endpoint URL. As before, all that information comes from the WSDL
and is used here to configure SOAP4R, and once we generate this stub, we no longer
need to reference the WSDL file.

 Listing 5.14 shows how we would use the TaskManagement driver with the typed
message parts in place of the WSDL driver and hashes.

$KCODE = 'UTF-8'
require 'rubygems'
require 'soap/driver'
require 'taskServiceDriver'

driver = TaskManager::TaskManagement.new
request = TaskManager::CreateTask.new('Learn SOAP4R', 1)
response = driver.createTask(request)
puts "Created task #{response.id}"

Discussion
There are several strategies for working with SOAP services. If you’re building an infra-
structure piece, you may need to work with the bare metal, using the SOAP object
model (classes like SOAPBody and SOAPString) to create and parse messages directly,
making dynamic invocations using a generic invoke method. If you’re building busi-
ness applications, you’ll want to work at a higher level of abstraction by using WSDL.
WSDL documents help you define the service contract, from which you can quickly
build client stubs and server skeletons that handle all the details of XML and messaging.

Listing 5.14 Task manager client using generated stubs

Invokes task
manager service

Uses UTF-8 all around

Requires SOAP4R
client library

Creates SOAP client
(driver) using stub

Invokes task
manager service

Licensed to Manning Marketing <mkt@manning.com>

125Summary

We advocate contract-first design and keeping your services compliant with WS-I Basic
Profile as the way to build services that interoperate across J2EE, .Net, Ruby, and many
other platforms and languages.

5.4 Summary
In this chapter, we’ve shown you what you need to know to get started building web
services with Ruby. We covered the basics of the web architecture using open-uri and
Net::HTTP, how to build RESTful web services using Rails, and how to exchange mes-
sages using the SOAP protocol.

 There are a few more libraries worth mentioning. This is Ruby, after all, and a lot
of developers new to Ruby are surprised to find out how many libraries already exist
for handling common tasks.

 Want to talk to eBay’s web services? eBay4R is the easiest way to get started. How
about Amazon’s on-demand services? Ruby has libraries for using Amazon S3, EC2,
SQS, and SimpleDB. SAP NetWeaver? Have a look at sapnwrfc, optimized for
NetWeaver web services. SalesForce? You can use the low-level RForce, or if you’re
much more comfortable with ActiveRecord, have a look at ActiveSalesForce.

 We’ll show you another example when we talk about asynchronous messaging in
chapter 7 and integrate our internal business application with a web service, using
WMQ and ActiveSalesForce. But first, we’ll talk about automating communication,
starting with e-mail and IM in the next chapter.

Deploying Ruby services on Java/C WS stacks
At the time of this writing, a few alternatives are emerging for building and deploying
SOAP services using Ruby. Unfortunately, these are so new that we did not get a
chance to cover them in this book.

One interesting possibility is to use JRuby and scripting support in Java 1.6 to deploy
Ruby services on any number of Java-based WS stacks. One example we’ve seen is
based on Axis2, another uses the Tuscany project (an SCA container that allows you
to mix services written in different languages). If you prefer using Ruby MRI, have a
look at C-based WS stacks that offer Ruby bindings, such as the Ruby bindings for
Axis/C, provided by WS02, the lead developer of Axis.

Licensed to Manning Marketing <mkt@manning.com>

