

vii

CONTENTS

FOREWORD . xiii

PREFACE . xvii

Scope . xviii
Intended Audience . xviii
How to Use This Book and Its Contents . xix
Organization of This Book . xx
Acknowledgments . xxi

ABOUT THE AUTHOR . xxiii

1 OVERVIEW . 1

1.1 What Is Testing? . 1

1.2 Testing and the V Models . 2

1.3 What Is a Defect? . 5

1.4 Why Is Testing Critical? . 7

1.5 The Limitations of Testing . 9

1.6 What Is a Testing Pitfall? . 10

1.7 Categorizing Pitfalls . 11

1.8 Pitfall Specifications . 11

viii Contents

2 BRIEF OVERVIEWS OF THE TESTING PITFALLS . 13

2.1 General Testing Pitfalls . 13
2.1.1 Test Planning and Scheduling Pitfalls . 13
2.1.2 Stakeholder Involvement and Commitment Pitfalls 14
2.1.3 Management-Related Testing Pitfalls . 14
2.1.4 Staffing Pitfalls . 15
2.1.5 Test-Process Pitfalls . 16
2.1.6 Test Tools and Environments Pitfalls . 17
2.1.7 Test Communication Pitfalls . 18
2.1.8 Requirements-Related Testing Pitfalls . 19

2.2 Test-Type-Specific Pitfalls . 20
2.2.1 Unit Testing Pitfalls . 20
2.2.2 Integration Testing Pitfalls . 20
2.2.3 Specialty Engineering Testing Pitfalls . 21
2.2.4 System Testing Pitfalls . 22
2.2.5 System of Systems (SoS) Testing Pitfalls . 22
2.2.6 Regression Testing Pitfalls . 23

3 DETAILED DESCRIPTIONS OF THE TESTING PITFALLS 25

3.1 Common Negative Consequences . 25

3.2 General Recommendations . 26

3.3 General Testing Pitfalls . 28
3.3.1 Test Planning and Scheduling Pitfalls . 28

No Separate Test Planning Documentation (GEN-TPS-1) 28
Incomplete Test Planning (GEN-TPS-2) . 31
Test Plans Ignored (GEN-TPS-3) . 35
Test-Case Documents as Test Plans (GEN-TPS-4) 37
Inadequate Test Schedule (GEN-TPS-5) . 39
Testing at the End (GEN-TPS-6) . 42

3.3.2 Stakeholder Involvement and Commitment Pitfalls 44
Wrong Testing Mindset (GEN-SIC-1) . 44
Unrealistic Testing Expectations (GEN-SIC-2) 47
Lack of Stakeholder Commitment to Testing (GEN-SIC-3) 49

3.3.3 Management-Related Testing Pitfalls . 51
Inadequate Test Resources (GEN-MGMT-1) . 52
Inappropriate External Pressures (GEN-MGMT-2) 54
Inadequate Test-Related Risk Management (GEN-MGMT-3) 57
Inadequate Test Metrics (GEN-MGMT-4) . 59

Inconvenient Test Results Ignored (GEN-MGMT-5) 61
Test Lessons Learned Ignored (GEN-MGMT-6) 64

3.3.4 Staffing Pitfalls . 65
Lack of Independence (GEN-STF-1) . 66
Unclear Testing Responsibilities (GEN-STF-2) 68
Inadequate Testing Expertise (GEN-STF-3) . 69
Developers Responsible for All Testing (GEN-STF-4) 72
Testers Responsible for All Testing (GEN-STF-5) 74

3.3.5 Test Process Pitfalls . 75
Testing and Engineering Processes Not Integrated (GEN-PRO-1) . . 76
One-Size-Fits-All Testing (GEN-PRO-2) . 77
Inadequate Test Prioritization (GEN-PRO-3) 80
Functionality Testing Overemphasized (GEN-PRO-4) 82
Black-Box System Testing Overemphasized (GEN-PRO-5) 85
Black-Box System Testing Underemphasized (GEN-PRO-6) 86
Too Immature for Testing (GEN-PRO-7) . 88
Inadequate Evaluations of Test Assets (GEN-PRO-8) 90
Inadequate Maintenance of Test Assets (GEN-PRO-9) 92
Testing as a Phase (GEN-PRO-10) . 94
Testers Not Involved Early (GEN-PRO-11) . 96
Incomplete Testing (GEN-PRO-12) . 98
No Operational Testing (GEN-PRO-13) . 100
Inadequate Test Data (GEN-PRO-14) . 102
Test-Type Confusion (GEN-PRO-15) . 104

3.3.6 Test Tools and Environments Pitfalls . 106
Over-Reliance on Manual Testing (GEN-TTE-1) 106
Over-Reliance on Testing Tools (GEN-TTE-2) 108
Too Many Target Platforms (GEN-TTE-3) . 110
Target Platform Difficult to Access (GEN-TTE-4) 112
Inadequate Test Environments (GEN-TTE-5) 114
Poor Fidelity of Test Environments (GEN-TTE-6) 118
Inadequate Test Environment Quality (GEN-TTE-7) 122
Test Assets Not Delivered (GEN-TTE-8) . 124
Inadequate Test Configuration Management (GEN-TTE-9) 126
Developers Ignore Testability (GEN-TTE-10) 129

3.3.7 Test Communication Pitfalls . 131
Inadequate Architecture or Design

Documentation (GEN-COM-1) . . 131
Inadequate Defect Reports (GEN-COM-2) . 134

Contents ix

x Contents

Inadequate Test Documentation (GEN-COM-3) 136
Source Documents Not Maintained (GEN-COM-4) 139
Inadequate Communication Concerning

Testing (GEN-COM-5) . 140
3.3.8 Requirements-Related Testing Pitfalls . 143

Ambiguous Requirements (GEN-REQ-1) . 144
Obsolete Requirements (GEN-REQ-2) . 147
Missing Requirements (GEN-REQ-3) . 150
Incomplete Requirements (GEN-REQ-4) . 152
Incorrect Requirements (GEN-REQ-5) . 154
Requirements Churn (GEN-REQ-6) . 156
Improperly Derived Requirements (GEN-REQ-7) 159
Verification Methods Not Properly Specified (GEN-REQ-8) 161
Lack of Requirements Trace (GEN-REQ-9) . 162

3.4 Test-Type-Specific Pitfalls . 164
3.4.1 Unit Testing Pitfalls . 164

Testing Does Not Drive Design and
Implementation (TTS-UNT-1) . 165

Conflict of Interest (TTS-UNT-2) . 167
3.4.2 Integration Testing Pitfalls . 169

Integration Decreases Testability Ignored (TTS-INT-1) 169
Inadequate Self-Monitoring (TTS-INT-2) . 172
Unavailable Components (TTS-INT-3) . 173
System Testing as Integration Testing (TTS-INT-4) 175

3.4.3 Specialty Engineering Testing Pitfalls . 177
Inadequate Capacity Testing (TTS-SPC-1) . 178
Inadequate Concurrency Testing (TTS-SPC-2) 181
Inadequate Internationalization Testing (TTS-SPC-3) 183
Inadequate Interoperability Testing (TTS-SPC-4) 185
Inadequate Performance Testing (TTS-SPC-5) 188
Inadequate Reliability Testing (TTS-SPC-6) 190
Inadequate Robustness Testing (TTS-SPC-7) 193
Inadequate Safety Testing (TTS-SPC-8) . 197
Inadequate Security Testing (TTS-SPC-9) . 200
Inadequate Usability Testing (TTS-SPC-10) 203

3.4.4 System Testing Pitfalls . 206
Test Hooks Remain (TTS-SYS-1) . 206
Lack of Test Hooks (TTS-SYS-2) . 208
Inadequate End-To-End Testing (TTS-SYS-3) 209

Contents xi

3.4.5 System of Systems (SoS) Testing Pitfalls . 211
Inadequate SoS Test Planning (TTS-SoS-1) 212
Unclear SoS Testing Responsibilities (TTS-SoS-2) 213
Inadequate Resources for SoS Testing (TTS-SoS-3) 215
SoS Testing Not Properly Scheduled (TTS-SoS-4) 217
Inadequate SoS Requirements (TTS-SoS-5) 219
Inadequate Support from Individual System

Projects (TTS-SoS-6) . 220
Inadequate Defect Tracking Across Projects (TTS-SoS-7) 222
Finger-Pointing (TTS-SoS-8) . 224

3.4.6 Regression Testing Pitfalls . 225
Inadequate Regression Test Automation (TTS-REG-1) 225
Regression Testing Not Performed (TTS-REG-2) 228
Inadequate Scope of Regression Testing (TTS-REG-3) 231
Only Low-Level Regression Tests (TTS-REG-4) 234
Test Resources Not Delivered for Maintenance (TTS-REG-5) 236
Only Functional Regression Testing (TTS-REG-6) 237

4 CONCLUSION . 241

4.1 Future Work . 241

4.2 Maintaining the Lists of Pitfalls . 242

A GLOSSARY . 243
B ACRONYMS . 253
C NOTES . 255
D REFERENCES . 269
E PLANNING CHECKLIST . 271

 INDEX . 279

1

CHAPTER 1

OVERVIEW

1.1 What Is Testing?

Testing is the activity of executing a system, subsystem, or component under
specific preconditions (for example, pretest mode, states, stored data, and
external conditions) with specific inputs so that its actual behavior (outputs
and postconditions) can be compared with its required or expected behavior.

Testing differs from other verification and validation methods (for example,
analysis, demonstration, and inspection) in that it is a dynamic, as opposed to
a static, analysis method that involves the actual execution of the thing being
tested.

Testing has the following goals:

 ! Primary goal:
 " Enable the system under test (SUT) to be improved by:

 # “Breaking” it (that is, by causing faults and failures)
 # Exposing its defects so that they can be fixed

 ! Secondary goals:
 " Provide adequate confidence based on sufficient objective evidence regard-

ing the SUT’s:
 # Quality

A system’s quality is not just its lack of defects or its correctness (in
terms of meeting its requirements). A system must also have the neces-
sary levels of relevant quality characteristics and attributes; for example,
availability, capacity, extensibility, maintainability, performance, porta-
bility, reliability, robustness, safety, security, and usability.

 # Fitness for purpose
 # Readiness for shipping, deployment, or being placed into operation

2 CHAPTER 1 OVERVIEW

1.2 Testing and the V Models

Figure 1.1 illustrates a common way of modeling system engineering: the tra-
ditional V Model of system engineering activities.1 On the left side of the V are
the analysis activities that decompose the users’ problem into small, manage-
able pieces. Similarly, the right side of the V shows the synthesis activities that
aggregate (and test) these pieces into the system that solves the users’ problem.

While useful, the traditional V model does not really represent system engi-
neering from the tester’s viewpoint. The next three figures show three increas-
ingly detailed V models that better capture the testing-specific aspects of sys-
tem engineering.

Figure 1.2 illustrates a V model oriented around work products rather than
activities. Specifically, these are the major executable work products because
testing involves the execution of work products. In this case, the left side of the
V illustrates the analysis of ever more detailed executable models, whereas the
right side of the V illustrates the corresponding incremental and iterative syn-
thesis of the actual system. This V model shows the executable things that are
tested rather than the general system engineering activities that generate them.

1. V stands for both validation and verification.

FIGURE 1.1 Traditional Single V model of system engineering activities

User
Requirements

Engineering

System
Requirements

Engineering

Architecture
Engineering

Design

Coding (SW)
Fabrication (HW)

Acceptance
Testing

System
Testing

System
Integration

Testing

Subsystem
Integration

Testing

Unit Testing

1.2 Testing and the V Models 3

Figure 1.3 illustrates the Double-V model, which adds the corresponding
tests to the Single V Model [Feiler 2012]. The key ideas to take away from this
model are:

 ! Every executable work product should be tested. Testing need not, and in fact
should not, be restricted to the implemented system and its parts. It is also
important to test any executable requirements, architecture, and design. In
this way, associated defects are found and fixed before they can migrate to the
actual system and its parts. This typically involves testing executable require-
ments, architecture, or design models of the system under test (SUT) that are
implemented in modeling languages (typically state-based and sufficiently
formal) such as SpecTRM-RL, Architecture Analysis and Design Language
(AADL), and Program Design Language (PDL); simulations of the SUT; or
executable prototypes of the SUT.

 ! Tests should be created and performed as the corresponding work products
are created. The short arrows with two arrowheads are used to show that (1)
the executable work products can be developed first and used to drive the

User
Requirements

Models

System
Requirements

Models

Architecture
Models

Component
Design
Models

Unit Design
Models

Operational
System

Integrated
System

Subsystems

Components
(SW, HW, and Data)

Units
(SW, HW, and Data)

FIGURE 1.2 The Single V model of testable work products

lit
Feiler

lit
[Feiler 2012].

4
 CH

A
PTER 1

O
V

ERV
IEW

User
Requirements

Models

System
Requirements

Models

Architecture
Models

Component
Design
Models

Unit Design
Models

Operational
System

Integrated
System

Subsystems

Components

Units

User
Requirements

Model Tests

System
Requirements

Model Tests

Architectural
Model Tests

Component
Design

Model Tests

Unit Design
Model Tests

Acceptance/
Operational

Tests

System
Tests

Subsystem
Integration Tests

Component
Integration Tests

Unit Tests

Executable
Work Products

Tests

Legend

Validation

Verification

 FIGURE 1.3 The Double V model of testable work products and corresponding tests

1.3 What Is a Defect? 5

creation of the tests or (2) Test Driven Development (TDD) can be used, in
which case the tests are developed before the work product they test.

 ! The top row of the model uses testing to validate that the system meets the
needs of its stakeholders (that is, that the correct system is built). Conversely,
the bottom four rows of the model use testing to verify that the system is built
correctly (that is, architecture conforms to requirements, design conforms to
architecture, implementation conforms to design, and so on).

 ! Finally, in practice, the two sides of the bottom row typically are combined
so that the unit design models are incorporated into the units and so that the
programming language is used as a program design language (PDL). Similarly,
the unit design model tests are incorporated into the unit tests so that the
same unit tests verify both the unit design and its implementation.

Figure 1.4 documents the Triple-V model, in which additional verification
activities have been added to verify that the testing activities were performed
properly. This provides evidence that testing is sufficiently complete and that it
will not produce numerous false-positive and false-negative results.

Although the V models appear to show a sequential waterfall development
cycle, they also can be used to illustrate an evolutionary (that is, incremen-
tal, iterative, and concurrent) development cycle that incorporates many small,
potentially overlapping V models. However, when applying a V model to the
agile development of a large, complex system, there are some potential compli-
cations that require more than a simple collection of small V models, such as:

 ! The architecturally significant requirements and the associated architecture
need to be firmed up as rapidly as is practical because all subsequent incre-
ments depend on the architecture, which is difficult and expensive to modify
once the initial increment(s) have been based on it.

 ! Multiple, cross-functional agile teams will be working on different com-
ponents and subsystems simultaneously, so their increments must be
coordinated across teams to produce consistent, testable components and
subsystems that can be integrated and released.

Finally, it is interesting to note that these V models are applicable not just to
the system under development but also to the development of the system’s test
environments or test beds and its test laboratories or facilities.

1.3 What Is a Defect?

A system defect (informally known as a bug) is a flaw or weakness in the sys-
tem or one of its components that could cause it to behave in an unintended,
unwanted manner or to exhibit an unintended, unwanted property. Defects are
related to, but are different from:

6
 CH

A
PTER 1

O
V

ERV
IEW

User
Requirements

Models

System
Requirements

Models

Architecture
Models

Component
Design
Models

Operational
System

Integrated
System

Subsystems

Components

Units

User
Requirements

Model Tests

System
Requirements

Model Tests

Architectural
Model Tests

Architectural
Model Test
Verification

System
Requirements

Test Verification

User Requirements
Model Test
Verification

Component
Design

Model Tests

Acceptance/
Operational

Tests

System
Tests

Subsystem
Integration Tests

Component
Integration Tests

Unit Tests

Acceptance/
Operational Test

Verification

System
Test Verification

Subsystem
Integration Test

Verification

Component
Integration Test

Verification

Validation

Verification

Unit Test
Verification

Component Design
Test Verification

Tests

Executable Work Products

Legend

Verification

FIGURE 1.4 The Triple V model of work products, tests, and test verification

1.4 Why Is Testing Critical? 7

 ! Errors Human mistakes that cause the defect (for example, making a pro-
gramming mistake or inputting incorrect data)

 ! Faults Incorrect conditions that are system-internal and not directly visible
from outside the system’s boundary (for example, the system stores incorrect
data or is in an incorrect mode or state)

 ! Failures Events or conditions in which the system visibly behaves incor-
rectly or has incorrect properties (that is, one or more of its behaviors or
properties are different from what its stakeholders can reasonably expect)

Common examples of defects include the following flaws or weaknesses:

 ! Defects can cause the SUT to violate specified (or unspecified) requirements,
including:

 " Functional requirements
 " Data requirements
 " Interface requirements
 " Quality requirements
 " Architecture, design, implementation, and configuration constraints

 ! Defects can also result when the SUT conforms to incorrect or unnecessary
requirements.

 ! Defects can cause the SUT to:
 " Fail to behave as it should
 " Be missing characteristics that it should have
 " Behave as it should not behave
 " Have characteristics that it should not have

 ! Defects can cause the SUT to be inconsistent with its architecture or design.
 ! Defects can result from incorrect or inappropriate architecture, design, imple-

mentation, or configuration decisions.
 ! Defects can violate design guidelines or coding standards.
 ! Defects can be safety or security vulnerabilities (for example, using inherently

unsafe language features or failure to verify input data).

1.4 Why Is Testing Critical?

A National Institute of Standards & Technology (NIST) report [NIST 2002]
states that inadequate testing methods and tools cost the US economy
between $22.2 billion and $59.5 billion annually, with roughly half of these
costs borne by software developers, in the form of extra testing, and half by
software users, in the form of failure avoidance and mitigation efforts. The

lit
[NIST 2002]

8 CHAPTER 1 OVERVIEW

same study notes that between 25% and 90% of software development bud-
gets are often spent on testing.

Testing is currently the most important of the standard verification and vali-
dation methods used during system development and maintenance. This is not
because testing is necessarily the most effective and efficient way to verify that
the system behaves as it should; it is not. (See Table 1.1, below.) Rather, it is
because far more effort, funding, and time are expended on testing than on all
other types of verification put together.

According to Capers Jones, most forms of testing find only about 35% of the
code defects [Jones 2013b]. Similarly, on average, individual programmers find
less than half the defects in their own software.

For example, Capers Jones analyzed data regarding defect identification
effectiveness from projects that were completed in early 2013 and produced the
results summarized in Table 1.1 [Jones 2013a]. Thus, the use of requirements
inspections identified 87% of requirements defects and 25.6% of all defects in
the software and its documentation. Similarly, static analysis of the code identi-
fied 87% of the code defects and 33.2% of all defects. Finally, a project that used
all of these static verification methods identified 95% of all defects.

As Table 1.2 shows, static verification methods are cumulatively more effec-
tive at identifying defects except, surprisingly, documentation defects.

TABLE 1.1 Average Percentage of Defects Found as a Function of Static Verification Method
and Defect Type

Verification
Method

Defect Type (Location) Total
EffectivenessRequirements Architecture Design Code Documentation

Requirements
Inspection 87% 5% 10% 5% 8.5% 25.6%

Architecture
Inspection 10% 85% 10% 2.5% 12% 14.9%

Design
Inspection 14% 10% 87% 7% 16% 37.3%

Code
Inspection 15% 12.5% 20% 85% 10% 70.1%

Static Analysis 2% 2% 7% 87% 3% 33.2%

IV&V 12% 10% 23% 7% 18% 16.5%

SQA Review 17% 10% 17% 12% 12.4% 28.1%

Total 95.2% 92.7% 96.1% 99.1% 58.8% 95.0%

Source: Jones 2013a

lit
[Jones 2013a].

lit
[Jones 2013b].

1.5 The Limitations of Testing 9

TABLE 1.2 Cumulative Effectiveness at Finding Defects by Static Verification Methods,
Testing, and Both

Verification
Method

Defect Type (Location) Total
EffectivenessRequirements Architecture Design Code Documentation

Static 95.2% 92.7% 96.1% 99.1% 58.8% 95.0%

Testing 72.3% 74.0% 87.6% 93.4% 95.5% 85.7%

Total 98.11% 98.68% 99.52% 99.94% 98.13% 99.27%

1.5 The Limitations of Testing

In spite of its critical nature, testing has a number of pitfalls that make it far less
effective and efficient than it should be. Testing is relatively ineffective in the
sense that a significant number of residual defects remain in a completed sys-
tem when it is placed into operation. Testing is also relatively inefficient when
you consider the large amount of effort, funding, and time that is currently
spent to find defects.

According to Capers Jones, most types of testing find only about 35% of
the software defects [Jones 2013]. This is consistent with the following, more
detailed analysis of defect detection rates as a function of test type and test
capabilities, as shown in Table 1.3 [McConnell 2004].

As Table 1.4 shows, no single type of testing is very effective at uncovering
defects, regardless of defect type. Even when all of these testing methods are
used on an average project, they still only identify four out of five of the code
defects.

TABLE 1.3 Defect Detection Rate

Defect Detection Rates

Test Type Lowest Mode Highest

Unit Test 15% 30% 50%

Component Test 20% 30% 35%

Integration Test 25% 35% 40%

System Test 25% 40% 55%

Regression Test 15% 25% 30%

Low-volume Beta Test 25% 35% 40%

High-volume Beta Test 60% 75% 85%

Source: Jones 2013a

Source: McConnell 2004

lit
[McConnell 2004].

10 CHAPTER 1 OVERVIEW

TABLE 1.4 Defect Detection Rate

Static Verification
Project Defect Detection Rate

Worst Average Best

Desk Checking 23% 25% 27%

Static Analysis 0% 55% 55%

Inspection 0% 0% 93%

Static Subtotal 19% 64% 98%

Testing
Project Defect Detection Rate

Worst Average Best

Unit Test 28% 30% 32%

Function Test 31% 33% 35%

Regression Test 10% 12% 14%

Component Test 28% 30% 32%

Performance Test 6% 10% 14%

System Test 32% 34% 36%

Acceptance Test 13% 15% 17%

Testing Subtotal 72% 81% 87%

Cumulative Total 81.1% 95.6% 99.96%

1.6 What Is a Testing Pitfall?

A testing pitfall is any decision, mindset, action, or failure to act that unnec-
essarily and, potentially unexpectedly, causes testing to be less effective, less
efficient, or more frustrating to perform. Basically, a testing pitfall is a com-
monly occurring way to screw up testing, and projects fall into pitfalls when
testers, managers, requirements engineers, and other testing stakeholders make
testing-related mistakes that can have unintended negative consequences.

In a sense, the description of a testing pitfall constitutes a testing anti-
pattern. However, the term pitfall was specifically chosen to evoke the image of
a hidden or not easily identified trap for the unwary or uninitiated. As with any
trap, it is better to avoid a testing pitfall than it is to have to dig one’s self and
one’s project out of it after having fallen in.

Source: Jones 2013b

1.8 Pitfall Specifications 11

1.7 Categorizing Pitfalls

Many testing pitfalls can occur during the development or maintenance of soft-
ware-reliant systems and software applications. While no project is likely to be
so poorly managed and executed as to experience the majority of these pitfalls,
most projects will suffer several of them. Similarly, although these testing pit-
falls do not guarantee failure, they definitely pose serious risks that need to be
managed.

This book documents 92 pitfalls that have been observed to commonly
occur during testing. These pitfalls are categorized as follows:

 ! General Testing Pitfalls
 " Test Planning and Scheduling Pitfalls
 " Stakeholder Involvement and Commitment Pitfalls
 " Management-Related Testing Pitfalls
 " Staffing Pitfalls
 " Test Process Pitfalls
 " Test Tools and Environments Pitfalls
 " Test Communication Pitfalls
 " Requirements-Related Testing Pitfalls

 ! Test-Type-Specific Pitfalls
 " Unit Testing Pitfalls
 " Integration Testing Pitfalls
 " Specialty Engineering Testing Pitfalls
 " System Testing Pitfalls
 " System of Systems (SoS) Testing Pitfalls
 " Regression Testing Pitfalls

Although each of these testing pitfalls has been observed on multiple proj-
ects, it is entirely possible that you might have testing pitfalls that are not
addressed by this document. Please notify me of any new testing pitfalls you
stumble across or any additional recommended changes to the current pitfalls
so that I can incorporate them into future editions of this book.

1.8 Pitfall Specifications

Chapter 2 gives high-level descriptions of the different pitfalls, while Chapter 3
documents each testing pitfall with the following detailed information:

lit
General Testing Pitfalls

lit
Test Planning and Scheduling Pitfalls

lit
Stakeholder Involvement and Commitment Pitfalls

lit
Management-Related Testing Pitfalls

lit
Staffing Pitfalls

lit
Test Process Pitfalls

lit
Test Tools and Environments Pitfalls

lit
Test Communication Pitfalls

lit
Requirements-Related Testing Pitfalls

lit
Test-Type-Specific Pitfalls

lit
Unit Testing Pitfalls

lit
Integration Testing Pitfalls

lit
Specialty Engineering Testing Pitfalls

lit
System Testing Pitfalls

lit
System of Systems (SoS) Testing Pitfalls

lit
Regression Testing Pitfalls

12 CHAPTER 1 OVERVIEW

 ! Title A short, descriptive name of the pitfall
 ! Description A brief definition of the pitfall
 ! Potential Applicability The context in which the pitfall may be applicable
 ! Characteristic Symptoms (or, How You Will Know) Symptoms that indi-

cate the possible existence of the pitfall
 ! Potential Negative Consequences (Why You Should Care) Potential nega-

tive consequences to expect if the pitfall is not avoided or mitigated[3]
 ! Potential Causes Potential root and proximate causes of the pitfall[4]
 ! Recommendations (What You Should Do) Recommended actions (prepare,

enable, perform, and verify) to take to avoid or mitigate the pitfall[5]
 ! Related Pitfalls A list of other related testing pitfalls

A few words on word choice and grammar are probably appropriate before
you start reading about the individual pitfalls:

 ! Potential Applicability You may fall into these pitfalls on your project, but
then again you may not. Some pitfalls will be more probable and therefore more
relevant than others. Of course, if you have already fallen into a given pitfall,
it ceases to be potentially applicable and is now absolutely applicable. Because
potential applicability currently exists, it is described in the present tense.

 ! Characteristic Symptoms You may have observed these symptoms in the
past, and you may well be observing them now. They may even be waiting for
you in the future. To save me from having to write all three tenses and, more
importantly, to save you from having to read them all, I have listed all symp-
toms in present tense.

 ! Potential Negative Consequences Once again, you may have suffered
these consequences in the past, or they may be happening now. These conse-
quences might still be in the future and avoidable (or subject to mitigation)
if you follow the appropriate recommendations now. These consequences are
also listed in the present tense.

Note that sometimes the first symptom(s) of a pitfall are the negative con-
sequence(s) you are suffering from because you fell into it. Therefore, it is not
always obvious whether something should be listed under symptoms, conse-
quences, or both. To avoid listing the same negative event or situation twice for
the same pitfall, I have endeavored to include it only once under the most obvi-
ous heading.

 ! Potential Causes Finally, the causes may also lie in your past, your present, or
your future. However, they seem to sound best when written in the past tense, for
they must by their very nature precede the pitfall’s symptoms and consequences.

lit
3]

lit
4]

lit
5]

13

CHAPTER 2

BRIEF OVERVIEWS OF THE TESTING PITFALLS

This chapter provides a high-level descriptive overview of the testing pitfalls,
including the symptoms by which you can recognize them.

2.1 General Testing Pitfalls

These general testing pitfalls are not primarily specific to any single type of
testing.

2.1.1 Test Planning and Scheduling Pitfalls
The following pitfalls are related to test planning and scheduling:

1. No Separate Test Planning Documentation (GEN-TPS-1)
There is no separate testing-specific planning documentation, only incomplete,
high-level overviews of testing in the general planning documents.

2. Incomplete Test Planning (GEN-TPS-2)
Test planning and its associated documentation are not sufficiently complete
for the current point in the system development cycle.

3. Test Plans Ignored (GEN-TPS-3)
The test planning documentation is ignored (that is, it becomes “shelfware”)
once it is developed and delivered. It is neither used nor maintained.

4. Test-Case Documents as Test Plans (GEN-TPS-4)
Test-case documents that document specific test cases are mislabeled as test
plans.

5. Inadequate Test Schedule (GEN-TPS-5)
The testing schedule is inadequate to complete proper testing.

lit
No Separate Test Planning Documentation (GEN-TPS-1)

lit
Incomplete Test Planning (GEN-TPS-2)

lit
Test Plans Ignored (GEN-TPS-3)

lit
Test-Case Documents as Test Plans (GEN-TPS-4)

lit
Inadequate Test Schedule (GEN-TPS-5)

14 CHAPTER 2 BRIEF OVERVIEWS OF THE TESTING PITFALLS

6. Testing at the End (GEN-TPS-6)
All testing is performed late in the development cycle; there is little or no test-
ing of executable models or unit or integration testing planned or performed
during the early and middle stages of the development cycle.

2.1.2 Stakeholder Involvement and Commitment Pitfalls
The following pitfalls are related to stakeholder involvement in and commit-
ment to testing:

7. Wrong Testing Mindset (GEN-SIC-1)
Some testers and testing stakeholders have an incorrect testing mindset, such
as (1) the purpose of testing is to demonstrate that the system works properly
rather than to determine where and how it fails, (2) it is the responsibility of
testers to verify or “prove” that the system works, (3) the system is assumed to
work, and so there is no reason to show that it doesn’t work, and (4) testing is
viewed as a cost center (that is, an expense) rather than as an investment (or
something that can minimize future expenses).

8. Unrealistic Testing Expectations (GEN-SIC-2)
Testing stakeholders (especially customer representatives and managers) have
unrealistic testing expectations, such as (1) testing detects all (or even the
majority of) defects, (2) testing proves that there are no remaining defects and
that the system therefore works as intended, (3) testing can be, for all practi-
cal purposes, exhaustive, (4) testing can be relied on for all verification, even
though some requirements are better verified via analysis, demonstration, or
inspection, and (5) testing (if it is automated) will guarantee the quality of the
tests and reduce the testing effort.

9. Lack of Stakeholder Commitment to Testing (GEN-SIC-3)
Stakeholder commitment to the testing effort is inadequate; sufficient resources
(for example, people, time in the schedule, tools, or funding) are not allocated
the testing effort.

2.1.3 Management-Related Testing Pitfalls
The following testing pitfalls are related to management failures:

10. Inadequate Test Resources (GEN-MGMT-1)
Management allocates an inadequate amount of resources to testing, including
(1) test time in the schedule with inadequate schedule reserves, (2) adequately
trained and experienced testers and reviewers, (3) funding, and (4) test tools,
test environments (for example, integration test beds and repositories of test
data), and test facilities.

lit
at the End (GEN-TPS-6)

lit
Testing at the End (GEN-TPS-6)

lit
Wrong Testing Mindset (GEN-SIC-1)

lit
Unrealistic Testing Expectations (GEN-SIC-2)

lit
Lack of Stakeholder Commitment to Testing (GEN-SIC-3)

lit
Inadequate Test Resources (GEN-MGMT-1)

2.1 General Testing Pitfalls 15

11. Inappropriate External Pressures (GEN-MGMT-2)
Managers and others in positions of authority subject testers to inappropriate
external pressures.

12. Inadequate Test-Related Risk Management (GEN-MGMT-3)
There are too few test-related risks identified in the project’s official risk reposi-
tory, and those that are identified have inappropriately low probabilities, low
harm severities, and low priorities.

13. Inadequate Test Metrics (GEN-MGMT-4)
Too few test-related metrics are being produced, analyzed, reported, and used
in decision making.

14. Inconvenient Test Results Ignored (GEN-MGMT-5)
Management ignores or treats lightly inconvenient negative test results (espe-
cially those with negative ramifications for the schedule, budget, or system
quality).

15. Test Lessons Learned Ignored (GEN-MGMT-6)
Lessons learned from testing on previous projects are ignored and not placed
into practice on the current project.

2.1.4 Staffing Pitfalls
These pitfalls stem from personnel issues in one way or another:

16. Lack of Independence (GEN-STF-1)
The test organization or project test team lack adequate technical, managerial,
and financial independence to enable them to withstand inappropriate pres-
sure from the development (administrative and technical) management to cut
corners.

17. Unclear Testing Responsibilities (GEN-STF-2)
The testing responsibilities are unclear and do not adequately address which
organizations, teams, and people are going to be responsible for and perform
the different types of testing.

18. Inadequate Testing Expertise (GEN-STF-3)
Some testers and testing stakeholders have inadequate testing-related under-
standing, expertise, experience, or training.

19. Developers Responsible for All Testing (GEN-STF-4)
There is no separate full-time tester role. Instead, every member of each
development team is responsible for testing what he or she designed and
implemented.

lit
Inappropriate External Pressures (GEN-MGMT-2)

lit
Inadequate Test-Related Risk Management (GEN-MGMT-3)

lit
Inadequate Test Metrics (GEN-MGMT-4)

lit
Inconvenient Test Results Ignored (GEN-MGMT-5)

lit
Test Lessons Learned Ignored (GEN-MGMT-6)

lit
Lack of Independence (GEN-STF-1)

lit
Unclear Testing Responsibilities (GEN-STF-2)

lit
Inadequate Testing Expertise (GEN-STF-3)

lit
Developers Responsible for All Testing (GEN-STF-4)

16 CHAPTER 2 BRIEF OVERVIEWS OF THE TESTING PITFALLS

20. Testers Responsible for All Testing (GEN-STF-5)
Testers are responsible for all of the testing during system development. Devel-
opers are not even performing unit testing (of either their own software or that
of their peers).

2.1.5 Test-Process Pitfalls
These pitfalls are related to the testing process rather than the people perform-
ing the testing:

21. Testing and Engineering Processes Not Integrated (GEN-PRO-1)
The testing process is not adequately integrated into the overall system engi-
neering process, but is rather treated as a separate specialty engineering activity
with only limited interfaces with the primary engineering activities.

22. One-Size-Fits-All Testing (GEN-PRO-2)
All testing is performed the same way, to the same level of rigor, regardless of
its criticality.

23. Inadequate Test Prioritization (GEN-PRO-3)
Testing is not adequately prioritized (for example, all types of testing have the
same priority).

24. Functionality Testing Overemphasized (GEN-PRO-4)
There is an overemphasis on testing functionality as opposed to testing quality,
data, and interface requirements and testing architectural, design, and imple-
mentation constraints.

25. Black-Box System Testing Overemphasized (GEN-PRO-5)
There is an overemphasis on black-box system testing for requirements con-
formance, and there is very little white-box unit and integration testing for the
architecture, design, and implementation verification.

26. Black-Box System Testing Underemphasized (GEN-PRO-6)
There is an overemphasis on white-box unit and integration testing, and very
little time is spent on black-box system testing to verify conformance to the
requirements.

27. Too Immature for Testing (GEN-PRO-7)
Products are delivered for testing when they are immature and not ready to be
tested.

28. Inadequate Evaluations of Test Assets (GEN-PRO-8)
The quality of the test assets is not adequately evaluated prior to using them.

29. Inadequate Maintenance of Test Assets (GEN-PRO-9)
Test assets are not properly maintained (that is, adequately updated and iterated)
as defects are found and the system or software under test (SUT) is changed.

lit
Tester esters Resp s Respons onsible for A ible All T ll Testi esting (GEN-S g STF TF-5)
-

lit
Testing and Engineering Processes Not Integrated (GEN-PRO-1)

lit
One-Size-Fits-All Testing (GEN-PRO-2)

lit
Inadequate Test Prioritization (GEN-PRO-3)

lit
Functionality Testing Overemphasized (GEN-PRO-4)

lit
Black-Box System Testing Overemphasized (GEN-PRO-5)

lit
Black-Box System Testing Underemphasized (GEN-PRO-6)

lit
Too Immature for Testing (GEN-PRO-7)

lit
Inadequate Evaluations of Test Assets (GEN-PRO-8)

lit
Inadequate Maintenance of Test Assets (GEN-PRO-9)

2.1 General Testing Pitfalls 17

30. Testing as a Phase (GEN-PRO-10)
Testing is treated as a phase that takes place late in a sequential (also known as
waterfall) development cycle instead of as an ongoing activity that takes place
continuously in an iterative, incremental, and concurrent (an evolutionary, or
agile) development cycle.[6]

31. Testers Not Involved Early (GEN-PRO-11)
Testers are not involved at the beginning of the project, but rather only once an
implementation exists to test.

32. Incomplete Testing (GEN-PRO-12)
The testers inappropriately fail to test certain testable behaviors, characteris-
tics, or components of the system.

33. No Operational Testing (GEN-PRO-13)
Representative users are not performing any operational testing of the “com-
pleted” system under actual operational conditions.

34. Inadequate Test Data (GEN-PRO-14)
The test data (including individual test data and sets of test data) is incomplete
or invalid.

35. Test-Type Confusion (GEN-PRO-15)
Test cases from one type of testing are redundantly repeated as part of another
type of testing, even though the testing types have quite different purposes and
scopes.

2.1.6 Test Tools and Environments Pitfalls
These pitfalls are related to the tools and environments used to perform testing:

36. Over-Reliance on Manual Testing (GEN-TTE-1)
Testers place too much reliance on manual testing such that the majority of
testing is performed manually, without adequate support of test tools or test
scripts.

37. Over-Reliance on Testing Tools (GEN-TTE-2)
Testers and other testing stakeholders place too much reliance on commercial
off-the-shelf (COTS) and homegrown testing tools.

38. Too Many Target Platforms (GEN-TTE-3)
The test team and testers are not adequately prepared for testing applications
that will execute on numerous target platforms (for example, hardware, operat-
ing system, and middleware).

39. Target Platform Difficult to Access (GEN-TTE-4)
The testers are not prepared to perform adequate testing when the target plat-
form is not designed to enable access for testing.

lit
6]

lit
Testing as a Phase (GEN-PRO-10)

lit
Testers Not Involved Early (GEN-PRO-11)

lit
Incomplete Testing (GEN-PRO-12)

lit
No Operational Testing (GEN-PRO-13)

lit
Inadequate Test Data (GEN-PRO-14)

lit
Test-Type Confusion (GEN-PRO-15)

lit
Over-Reliance on Manual Testing (GEN-TTE-1)

lit
Over-Reliance on Testing Tools (GEN-TTE-2)

lit
Too Many Target Platforms (GEN-TTE-3)

lit
Target Platform Difficult to Access (GEN-TTE-4)

18 CHAPTER 2 BRIEF OVERVIEWS OF THE TESTING PITFALLS

40. Inadequate Test Environments (GEN-TTE-5)
There are insufficient test tools, test environments or test beds, and test labora-
tories or facilities, so adequate testing cannot be performed within the schedule
and personnel limitations.

41. Poor Fidelity of Test Environments (GEN-TTE-6)
The testers build and use test environments or test beds that have poor fidel-
ity to the operational environment of the system or software under test (SUT),
and this causes inconclusive or incorrect test results (false-positive and false-
negative test results).

42. Inadequate Test Environment Quality (GEN-TTE-7)
The quality of one or more test environments is inadequate due to an excessive
number of defects.

43. Test Assets Not Delivered (GEN-TTE-8)
Developers deliver the system or software to the sustainers without the asso-
ciated test assets. For example, delivering test assets (such as test plans, test
reports, test cases, test oracles, test drivers or scripts, test stubs, and test envi-
ronments) is neither required nor planned.

44. Inadequate Test Configuration Management (GEN-TTE-9)
Testing work products (for example, test cases, test scripts, test data, test tools,
and test environments) are not under configuration management (CM).

45. Developers Ignore Testability (GEN-TTE-10)
It is unnecessarily difficult to develop automated tests because the develop-
ers do not consider testing when designing and implementing their system or
software.

2.1.7 Test Communication Pitfalls
These pitfalls are related to poor communication with regard to testing:

46. Inadequate Architecture or Design Documentation (GEN-COM-1)2
Architects and designers produce insufficient architecture or design documen-
tation (for example, models and documents) to support white-box (structural)
unit and integration testing.

47. Inadequate Defect Reports (GEN-COM-2)
Testers and others create defect reports (also known as bug and trouble reports)
that are incomplete, contain incorrect information, or are difficult to read.

2. Inadequate Requirements Documentation is covered in the next section, which concentrates on
requirements.

lit
Inadequate T nadequate Test E est Envi nvironmen onments (GEN- ts TT TTE-5)
E-

lit
Poor Fidelity of Test Environments (GEN-TTE-6)

lit
Inadequate Test Environment Quality (GEN-TTE-7)

lit
Test Assets Not Delivered (GEN-TTE-8)

lit
Inadequate Test Configuration Management (GEN-TTE-9)

lit
Developers Ignore Testability (GEN-TTE-10)

lit
Architecture

lit
Inadequate

lit
Design

lit
or

lit
Inadequate

lit
Documentation

lit
GEN-

lit
COM-

lit
1)

lit
1)

lit
Inadequate Defect Reports (GEN-COM-2)

2.1 General Testing Pitfalls 19

48. Inadequate Test Documentation (GEN-COM-3)3

Testers create test documentation that is incomplete or contains incorrect
information.

49. Source Documents Not Maintained (GEN-COM-4)
Developers do not properly maintain the requirements specifications, architec-
ture documents, design documents, and associated models that are needed as
inputs to the development of tests.

50. Inadequate Communication Concerning Testing (GEN-COM-5)
There is inadequate verbal and written communication concerning the testing
among testers and other testing stakeholders.

2.1.8 Requirements-Related Testing Pitfalls
These pitfalls are related to the negative impact of poor requirements on testing:

51. Ambiguous Requirements (GEN-REQ-1)
Testers misinterpret a great many ambiguous requirements and therefore base
their testing on incorrect interpretations of these requirements.

52. Obsolete Requirements (GEN-REQ-2)
Testers waste effort and time testing whether the system or software under test
(SUT) correctly implements a great many obsolete requirements.

53. Missing Requirements (GEN-REQ-3)
Testers overlook many undocumented requirements and therefore do not plan
for, develop, or run the associated overlooked test cases.

54. Incomplete Requirements (GEN-REQ-4)
Testers fail to detect that many requirements are incomplete; therefore, they
develop and run correspondingly incomplete or incorrect test cases.

55. Incorrect Requirements (GEN-REQ-5)
Testers fail to detect that many requirements are incorrect, and therefore
develop and run correspondingly incorrect test cases that produce false-posi-
tive and false-negative test results.

56. Requirements Churn (GEN-REQ-6)
Testers waste an excessive amount of time and effort developing and running
test cases based on many requirements that are not sufficiently stable and that
therefore change one or more times prior to delivery.

57. Improperly Derived Requirements (GEN-REQ-7)
Testers base their testing on improperly derived requirements, resulting in
missing test cases, test cases at the wrong level of abstraction, or incorrect test

3. Incomplete test plans are addressed in Incomplete Test Planning (GEN-TPS-2). This pitfall is more gen-
eral in that it addresses all testing documents, not just test plans.

lit
GEN-COM-3)

lit
Inadequate Test Documentation (

lit
Source Documents Not Maintained (GEN-COM-4)

lit
Inadequate Communication Concerning Testing (GEN-COM-5)

lit
Ambiguous Requirements (GEN-REQ-1)

lit
Obsolete Requirements (GEN-REQ-2)

lit
Missing Requirements (GEN-REQ-3)

lit
Incomplete Requirements (GEN-REQ-4)

lit
Incorrect Requirements (GEN-REQ-5)

lit
Requirements Churn (GEN-REQ-6)

lit
Improperly Derived Requirements (GEN-REQ-7)

lit
Incomplete Test Planning (GEN-TPS-2).

20 CHAPTER 2 BRIEF OVERVIEWS OF THE TESTING PITFALLS

cases based on cross cutting requirements that are allocated without modifica-
tion to multiple architectural components.

58. Verification Methods Not Properly Specified (GEN-REQ-8)
Testers (or other developers) fail to properly specify the verification method(s)
for each requirement, thereby causing requirements to be verified using unnec-
essarily inefficient or ineffective verification method(s).

59. Lack of Requirements Trace (GEN-REQ-9)
The testers do not trace the requirements to individual tests or test cases,
thereby making it unnecessarily difficult to determine whether the tests are
inadequate or excessive.

2.2 Test-Type-Specific Pitfalls

The following pitfalls are primarily restricted to a single type of testing:

2.2.1 Unit Testing Pitfalls
These pitfalls are related primarily to testing individual units:

60. Testing Does Not Drive Design and Implementation (TTS-UNT-1)
Software developers and testers do not develop their tests first and then use
these tests to drive development of the associated architecture, design, and
implementation.

61. Conflict of Interest (TTS-UNT-2)
Nothing is done to address the following conflict of interest that exists when
developers test their own work products: Essentially, they are being asked to
demonstrate that their software is defective.

2.2.2 Integration Testing Pitfalls
The following pitfalls are related primarily to integration testing:

62. Integration Decreases Testability Ignored (TTS-INT-1)
Testers fail to take into account that integration encapsulates the individual
parts of the whole and the interactions between them, thereby making the
internal parts of the integrated whole less observable and less controllable and,
therefore, less testable.

63. Inadequate Self-Monitoring (TTS-INT-2)
Testers are unprepared to address the difficulty of testing encapsulated compo-
nents due to a lack of system- or software-internal self-tests.

64. Unavailable Components (TTS-INT-3)
Integration testing must be postponed due to the unavailability of (1) system
hardware or software components or (2) test environment components.

lit
Ver erification Metho ification Methods Not P s Properly S operly Specified (GEN-REQ pecified REQ-8)
-

lit
8)

lit
Lack of Requirements Trace (GEN-REQ-9)

lit
Testing Does Not Drive Design and Implementation (TTS-UNT-1)

lit
Conflict of Interest (TTS-UNT-2)

lit
Integration Decreases Testability Ignored (TTS-INT-1)

lit
Inadequate Self-Monitoring (TTS-INT-2)

lit
Unavailable Components (TTS-INT-3)

2.2 Test-Type-Specific Pitfalls 21

65. System Testing as Integration Testing (TTS-INT-4)
Testers are actually performing system-level tests of system functionality when
they are supposed to be performing integration testing of component interfaces
and interactions.

2.2.3 Specialty Engineering Testing Pitfalls
The following pitfalls are highly similar in nature, although they vary signifi-
cantly in detail. This section could have been much larger because there are
many different quality characteristics and associated attributes, each with its
own associated potential symptoms, consequences, and causes.

66. Inadequate Capacity Testing (TTS-SPC-1)
Testers perform little or no capacity testing (or the capacity testing they do
perform is superficial) to determine the degree to which the system or software
degrades gracefully as capacity limits are approached, reached, and exceeded.

67. Inadequate Concurrency Testing (TTS-SPC-2)
Testers perform little or no concurrency testing (or the concurrency testing
they do perform is superficial) to explicitly uncover the defects that cause the
common types of concurrency faults and failures: deadlock, livelock, starva-
tion, priority inversion, race conditions, inconsistent views of shared memory,
and unintentional infinite loops.

68. Inadequate Internationalization Testing (TTS-SPC-3)
Testers perform little or no internationalization testing—or the international-
ization testing they do perform is superficial—to determine the degree to which
the system is configurable to perform appropriately in multiple countries.

69. Inadequate Interoperability Testing (TTS-SPC-4)
Testers perform little or no interoperability testing (or the interoperability test-
ing they do perform is superficial) to determine the degree to which the system
successfully interfaces and collaborates with other systems.

70. Inadequate Performance Testing (TTS-SPC-5)
Testers perform little or no performance testing (or the testing they do perform
is only superficial) to determine the degree to which the system has adequate
levels of the performance quality attributes: event schedulability, jitter, latency,
response time, and throughput.

71. Inadequate Reliability Testing (TTS-SPC-6)
Testers perform little or no long-duration reliability testing (also known as
stability testing)—or the reliability testing they do perform is superficial (for
example, it is not done under operational profiles and is not based on the
results of any reliability models)—to determine the degree to which the system
continues to function over time without failure.

lit
System T ystem Testi esting as I g Integ tegration T ation Testi esting (TTS-IN g INT-4)

lit
Inadequate Capacity Testing (TTS-SPC-1)

lit
Inadequate Concurrency Testing (TTS-SPC-2)

lit
Inadequate Internationalization Testing (TTS-SPC-3)

lit
Inadequate Interoperability Testing (TTS-SPC-4)

lit
Inadequate Performance Testing (TTS-SPC-5)

lit
Inadequate Reliability Testing (TTS-SPC-6)

22 CHAPTER 2 BRIEF OVERVIEWS OF THE TESTING PITFALLS

72. Inadequate Robustness Testing (TTS-SPC-7)
Testers perform little or no robustness testing, or the robustness testing they do
perform is superficial (for example, it is not based on the results of any robust-
ness models), to determine the degree to which the system exhibits adequate
error, fault, failure, and environmental tolerance.

73. Inadequate Safety Testing (TTS-SPC-8)
Testers perform little or no safety testing, or the safety testing they do perform
is superficial (for example, it is not based on the results of a safety or hazard
analysis), to determine the degree to which the system is safe from causing or
suffering accidental harm.

74. Inadequate Security Testing (TTS-SPC-9)
Testers perform little or no security testing—or the security testing they do
perform is superficial (for example, it is not based on the results of a security
or threat analysis)—to determine the degree to which the system is secure from
causing or suffering malicious harm.

75. Inadequate Usability Testing (TTS-SPC-10)
Testers or usability engineers perform little or no usability testing—or the
usability testing they do perform is superficial—to determine the degree to
which the system’s human-machine interfaces meet the system’s requirements
for usability, manpower, personnel, training, human factors engineering (HFE),
and habitability.

2.2.4 System Testing Pitfalls
The following pitfalls are related primarily to the testing of completely inte-
grated systems:

76. Test Hooks Remain (TTS-SYS-1)
Testers fail to remove temporary test hooks after completing testing, so they
remain in the delivered or fielded system.

77. Lack of Test Hooks (TTS-SYS-2)
Testers fail to take into account how a lack of test hooks makes it more difficult
to test parts of the system hidden via information hiding.

78. Inadequate End-to-End Testing (TTS-SYS-3)
Testers perform inadequate system-level functional testing of a system’s end-to-
end support for its missions.

2.2.5 System of Systems (SoS) Testing Pitfalls
The following pitfalls are related to testing systems of systems:

lit
Inadequate Robustnes nadequate Robustness T s Testi esting (TTS-SPC g SPC-7)

lit
Inadequate Safety Testing (TTS-SPC-8)

lit
Inadequate Security Testing (TTS-SPC-9)

lit
Inadequate Usability Testing (TTS-SPC-10)

lit
Test Hooks Remain (TTS-SYS-1)

lit
Lack of Test Hooks (TTS-SYS-2)

lit
Inadequate End-to-End Testing (TTS-SYS-3)

2.2 Test-Type-Specific Pitfalls 23

79. Inadequate SoS Planning (TTS-SoS-1)
Testers and SoS architects perform an inadequate amount of SoS test plan-
ning and fail to appropriately document their plans in SoS-level test planning
documentation.

80. Unclear SoS Testing Responsibilities (TTS-SoS-2)
Managers or testers fail to clearly define and document the responsibilities for
performing end-to-end SoS testing.

81. Inadequate Resources for SoS Testing (TTS-SoS-3)
Management fails to provide adequate resources for system of systems (SoS)
testing.

82. SoS Testing Not Properly Scheduled (TTS-SoS-4)
System of systems testing is not properly scheduled and coordinated with the
individual systems’ testing and delivery schedules.

83. Inadequate SoS Requirements (TTS-SoS-5)
Many SoS-level requirements are missing, are of poor quality, or are never offi-
cially approved or funded.

84. Inadequate Support from Individual System Projects (TTS-SoS-6)
Test support from individual system development or maintenance projects is
inadequate to perform system of systems testing.

85. Inadequate Defect Tracking Across Projects (TTS-SoS-7)
Defect tracking across individual system development or maintenance projects
is inadequate to support system of systems testing.

86. Finger-Pointing (TTS-SoS-8)
Different system development or maintenance projects assign the responsibility
for finding and fixing SoS-level defects to other projects.

2.2.6 Regression Testing Pitfalls
The following pitfalls are related primarily to regression testing:

87. Inadequate Regression Test Automation (TTS-REG-1)
Testers and developers have automated an insufficient number of tests to enable
adequate regression testing.

88. Regression Testing Not Performed (TTS-REG-2)
Testers and maintainers perform insufficient regression testing to determine if
new defects have been accidentally introduced when changes are made to the
system.

89. Inadequate Scope of Regression Testing (TTS-REG-3)
The scope of regression testing is insufficiently broad.

lit
Inadequate SoS Plann nadequate Planning (TTS-SoS- g 1)

lit
Unclear SoS Testing Responsibilities (TTS-SoS-2)

lit
Inadequate Resources for SoS Testing (TTS-SoS-3)

lit
SoS Testing Not Properly Scheduled (TTS-SoS-4)

lit
Inadequate SoS Requirements (TTS-SoS-5)

lit
Inadequate Support from Individual System Projects (TTS-SoS-6)

lit
Inadequate Defect Tracking Across Projects (TTS-SoS-7)

lit
Finger-Pointing (TTS-SoS-8)

lit
Inadequate Regression Test Automation (TTS-REG-1)

lit
Regression Testing Not Performed (TTS-REG-2)

lit
Inadequate Scope of Regression Testing (TTS-REG-3)

24 CHAPTER 2 BRIEF OVERVIEWS OF THE TESTING PITFALLS

90. Only Low-Level Regression Tests (TTS-REG-4)
Only low-level (for example, unit-level and possibly integration) regression
tests are rerun, so there is no system, acceptance, or operational regression test-
ing and no SoS regression testing.

91. Test Resources Not Delivered for Maintenance (TTS-REG-5)
The test resources produced by the development organization are not made
available to the maintenance organization to support testing new capabilities
and regression testing changes.

92. Only Functional Regression Testing (TTS-REG-6)
Testers and maintainers only perform regression testing to determine if changes
introduce functionality-related defects.

lit
Only L nly Low-L ow-Level Reg vel Regres ression T ion Tests (TTS-REG- ests 4)

lit
Test Resour est Resources Not Deli es Delivered for Mai vered Maintenanc tenance (TTS-REG-5)
e

lit
Only F nly Functional Reg unctional Regres ression T ion Testi esting (TTS-REG- g 6)

42 CHAPTER 3 DETAILED DESCRIPTIONS OF THE TESTING PITFALLS

GE
N

-T
PS

-6

Te
st

in
g

at
 th

e
En

d

TESTING AT THE END (GEN-TPS-6)

Description All testing is performed late in the development cycle.

Potential Applicability This pitfall is potentially applicable anytime that:
 ! A well-planned and well-documented nontrivial testing program is justified.
 ! The project has a nontrivial schedule that is sufficiently long to enable testing

to be postponed.

Characteristic Symptoms
 ! Testing is scheduled to be performed late in the development cycle on the

Project Master Schedule.
 " There is no testing of executable requirements, architecture, and design

models, possibly because no such models were developed.
 " This is essentially testing only on the right side of the Single V Model

(pages 2–3) when a sequential waterfall V model is used.
 " This is the opposite of Test Driven Development (TDD).

 ! Testers are only involved after requirements engineering, architecture engi-
neering, design, and implementation, when all of the defects have already
been created. Thus, testing is not used to help prevent any defects or to
uncover the defects as they are produced.

 ! Little or no unit or integration testing is planned or is performed during the
early and middle stages of the development cycle.

 ! There is insufficient time to perform testing during the current incremental,
iterative build such that some or all of the testing of the current build is post-
poned until the following build.

Potential Negative Consequences

 ! There is insufficient time left in the schedule to correct any major defects
found.[12]

 ! It is difficult to achieve and demonstrate the required degree of test coverage.
 ! Because so much of the system has been integrated before the beginning of

testing, it is very difficult to find and localize defects that remain hidden
within the internals of the system.

lit
12]

lit
Single V Model

3.3 General Testing Pitfalls 43

GEN
-TPS-6

Testing at the End

 ! Postponing testing from one build to another creates an ever-growing bow
wave of testing that can never be performed unless the schedule is radically
changed to postpone all work except for testing until testing gets caught up
(often a necessary but not politically acceptable action).

Potential Causes
 ! The project used a strictly interpreted, traditional, sequential waterfall develop-

ment cycle, whereby testing the requirements, architecture, and design does not
occur (that is, a strict Single V model was used instead of a Double V model or
Triple V model [see pages 5–6]).

 ! Management was not able to staff the testing team early during the develop-
ment cycle.

 ! Management was primarily interested in system testing and did not recognize
the need for lower-level (for example, unit and integration) testing.

 ! There was insufficient time allocated in an incremental, iterative build, both
to develop an iterative increment and to adequately test it.

Recommendations
 ! Prepare:

 " Plan and schedule testing to be performed iteratively, incrementally, and in
a parallel manner (that is, use an evolutionary development cycle), starting
early during development.

 " Provide training in incremental, iterative testing.
 " Incorporate iterative and incremental testing into the project’s system engi-

neering process.
 ! Enable:

 " Provide adequate testing resources (staffing, tools, budget, and schedule)
early during development.

 ! Perform:
 " Perform testing in an iterative, incremental, and parallel manner starting

early during the development cycle.
 " Testers and developers collaborate and work closely together so that new or

updated components can be unit and integration tested as soon as is practical.
 ! Verify:

 " In an ongoing manner (or at the very least, during major project mile-
stones), determine whether testing is being performed iteratively, incre-
mentally, and in parallel with design, implementation, and integration.

 " Use testing metrics to determine the status and ongoing progress of testing.

Related Pitfalls Testing and Engineering Processes Not Integrated (GEN-PRO-1),
Testing as a Phase (GEN-PRO-10), Testers Not Involved Early (GEN-PRO-11)

lit
Single V model

lit
Double V model

lit
Triple V model riple

lit
Testing and Engineering Processes Not Integrated (GEN-PRO-1),
Testing as a Phase (GEN-PRO-10), Testers Not Involved Early (GEN-PRO-11)

lit
see pages 5–6]).

3.3 General Testing Pitfalls 47

GEN
-SIC-2

U
nrealistic Testing Expectations

 " Determine (for example, via conversation or questioning) whether testing
goes beyond “demonstrate that the system works” (sunny-day path test-
ing) to also include “demonstrate that the system does not work” (rainy-
day path testing)

 " Determine whether the testers exhibit the correct testing mindset.

Related Pitfalls Inappropriate External Pressures (GEN-MGMT-2), Inadequate
Communication Concerning Testing (GEN-COM-5)

UNREALISTIC TESTING EXPECTATIONS (GEN-SIC-2)

Description Testing stakeholders (especially customer representatives and man-
agers) have various unrealistic expectations with regard to testing.

Potential Applicability This pitfall is always potentially applicable.

Characteristic Symptoms
 ! Testing stakeholders (for example, managers and customer representatives)

and some testers falsely believe that:
 " Testing detects all (or even the majority of) defects.[19]
 " Testing proves that there are no remaining defects and that the system

therefore works as intended.
 " Testing can be, for all practical purposes, exhaustive. (This is false because,

for example, testing cannot test all input values under all conditions.)
 " Automated testing can be exhaustive. (It is impractical to automate certain

types of tests and exhaustive testing is almost always impossible, regardless
of whether the tests are manual or automated.)

 " Automated testing improves or even guarantees the quality of the tests. (It
is quite possible to automate poor tests.)

 " Automated testing will always decrease costs. (It may cost more, depend-
ing on how rapidly the system under test—especially its user interface—is
iterated and how often regression testing must occur.)

 " There is no need to provide additional resources to develop, verify, and
maintain the automated test cases.

 " Testing can be relied on for all verification, even though some require-
ments are better verified via analysis, demonstration, certification, and
inspection.

lit
19]

lit
Inappropriate External Pressures (GEN-MGMT-2), Inadequate
Communication Concerning Testing (GEN-COM-5)

48 CHAPTER 3 DETAILED DESCRIPTIONS OF THE TESTING PITFALLS

GE
N

-S
IC

-2

U
nr

ea
lis

tic
 T

es
tin

g
Ex

pe
ct

at
io

ns

Potential Negative Consequences

 ! Testing stakeholders (for example, customer representatives, managers, devel-
opers or testers) have a false sense of security (that is, unjustified and incor-
rect confidence) that the system will function properly when delivered and
deployed.

 ! Non-testing forms of verification (for example, analysis, demonstration,
inspection, and simulation) are not given adequate emphasis, thereby unnec-
essarily increasing cost and schedule.

 ! When the system inevitably fails, the testers are more likely to get “blamed”
for causing the failure of the unrealistic expectation. Although this may hap-
pen even without the unrealistic expectation, the existence of the expectation
increases the likelihood and severity of the blame.

Potential Causes
 ! Managers and other testing stakeholders did not understand that:

 " A passed test could result from a weak or incorrect test rather than from a
lack of defects.

 " There are always defects to be revealed. A truly successful or useful test is
one that uncovers one or more defects, whereas a passed test proves only
that the system worked in that single, specific instance.[20]

 " Test automation requires specialized expertise and needs to be budgeted
for the effort required to develop, verify, and maintain the automated tests.
Testing stakeholders may get a false sense of security that there are no
defects when the system passes all automated tests; these tests could be
incomplete, contain incorrect data, or have defects in their scripting.

 ! Testing stakeholders and testers were not exposed to research results that
document the relatively large percentage of residual defects that typically
remain after testing.

 ! Testers and testing stakeholders were not trained in verification approaches
(for example, analysis, demonstration, and inspection) other than testing and
its relative pros and cons.

 ! Project testing metrics did not include estimates of residual defects.

Recommendations
 ! Prepare:

 " Collect information on the limitations of testing.

lit
20]

3.3 General Testing Pitfalls 49

GEN
-SIC-3

Lack of Stakeholder Com
m

itm
ent to Testing

 " Collect information on when and how to augment testing with other types
of verification.

 ! Enable:
 " Provide basic training in verification methods, including their associated

strengths and limitations.
 ! Perform:

 " Explain the limits of testing to managers, customer representatives, testers,
and other testing stakeholders:

 # Testing will not detect all (or even a majority of the) defects.
 # No testing is truly exhaustive.
 # Testing cannot prove (or demonstrate) that the system works under all

combinations of preconditions and trigger events.
 # A passed test could result from a weak test rather than from a lack of

defects.
 # A truly successful test is one that finds one or more defects.

 " Do not rely on testing for the verification of all requirements, but rather
also incorporate other verification approaches, especially when verifying
the architecturally significant quality requirements.

 " Collect, analyze, and report testing metrics that estimate the number of
defects remaining after testing.

 ! Verify:
 " Determine whether testing stakeholders understand the limitations of

testing.
 " Determine whether testing is the only type of verification being used.
 " Determine whether the number of defects remaining is being estimated

and reported.

Related Pitfalls Inappropriate External Pressures (GEN-MGMT-2), Inadequate
Communication Concerning Testing (GEN-COM-5), Regression Testing Not Per-
formed (TTS-REG-2)

LACK OF STAKEHOLDER COMMITMENT TO TESTING (GEN-SIC-3)

Description Stakeholder commitment to the testing effort is inadequate.

Potential Applicability This pitfall is always potentially applicable.

Characteristic Symptoms
 ! Stakeholders ignore the testers and their test results. For example, stakehold-

ers stop:

lit
Inappropriate External Pressures (GEN-MGMT-2), Inadequate
Communication Concerning Testing (GEN-COM-5), Regression Testing Not Per-
formed (TTS-REG-2)

118 CHAPTER 3 DETAILED DESCRIPTIONS OF THE TESTING PITFALLS

GE
N

-T
TE

-6

Po
or

 F
id

el
ity

 o
f T

es
t E

nv
ir

on
m

en
ts

POOR FIDELITY OF TEST ENVIRONMENTS (GEN-TTE-6)

Description The testers build and use test environments or test beds that have
poor fidelity to the operational environment of the system or software under test
(SUT), and this causes inconclusive or incorrect test results (false-positive and
false-negative test results).

Potential Applicability This pitfall is potentially applicable anytime that test envi-
ronments are being used, especially if they were developed in-house.

Characteristic Symptoms
 ! Parts of certain test environments poorly emulate or simulate parts of the

operational environment:
 " Test tools play the role of system-external actors (for example, human

operators or external systems), whereby the behavior of the test tool does
not exactly match that of the system-external actors.

 " The test tools communicate with the SUT via a different network than the
one that actors will eventually use to communicate with the SUT, such as
a public (or private) network substituting for a private (or public) net-
work, or an unclassified network (such as the Internet or Non-classified
Internet Protocol Router Network [NIPRNet]) substituting for a classified
network (such as the Secure Internet Protocol Router Network [SIPRNet]),
whereby the test network’s behavior (for example, bandwidth or reliability)
does not exactly match that of the actual network.

 " Test drivers or test stubs substitute for the actual clients or servers of the SUT.
 " The test environment contains prototype subsystems, hardware, or soft-

ware that substitute for actual subsystems, hardware, or software.
 " The test environment contains test software that imperfectly simulates

actual software or test hardware that imperfectly emulates actual hardware.
 " The test data (or database) is an imperfect replica of the actual data (or

database)[49]:
 # The size of the data or database differs.
 # The type or vendor of the database differs (for example, relational ver-

sus object or Oracle versus IBM versus Microsoft)
 # The format of the data differs.

 ! Cloud-based testing is being used.

lit
49]:

3.3 General Testing Pitfalls 119

GEN
-TTE-6

Poor Fidelity of Test Environm
ents

Potential Negative Consequences

 ! The low fidelity of a testing environment causes too many tests to yield
inconclusive or incorrect results:

 " Testing produces false-positive test results (that is, the system passes the
test even though it will not work in the actual operational environment).

 " Testing produces false-negative test results (that is, the system fails the test
even though it will work properly in the actual operational environment).[50]

 ! It is more difficult to localize and fix defects.
 ! Test cases need to be repeated when the fidelity problems are solved by:

 " Using a different test environment that better conforms to the operational
system and its environment (for example, by replacing software simulation
by hardware or by replacing prototype hardware with actual operational
hardware)

 " Fixing defects in the test environment

Potential Causes
 ! Forms of poor fidelity. Testing was performed using test environments con-

sisting of components or versions of components that are different from the
operational environment(s):

 " Different software platform. The software test platform significantly dif-
fered from the one(s) that were used to execute the delivered software:

 # Compiler or programming language class library
 # Operating system(s) such as:

 $ Android, Apple iOS, Windows (for example, an application that must
run on all popular mobile devices), LINUX, UNIX

 $ Non-real-time instead of real-time operating system
 # Middleware
 # Database(s)
 # Network software
 # Competing programs and applications (apps)[51]

 " Different hardware platform. The hardware test platform significantly dif-
fered from the one(s) that were used to execute the delivered software:[52]

 # Processor(s)
 # Memory
 # Motherboard(s)

lit
50]

lit
51]

lit
52]

120 CHAPTER 3 DETAILED DESCRIPTIONS OF THE TESTING PITFALLS

GE
N

-T
TE

-6

Po
or

 F
id

el
ity

 o
f T

es
t E

nv
ir

on
m

en
ts

 # Graphic cards
 # Network devices (for example, routers and firewalls)
 # Disc or tape libraries
 # Sensors and actuators
 # Battery age[53]

 " Different data. The data stored by the test platform significantly differed
from the data that was used with the delivered software:

 # Amount of data
 # Validity of the data

 " Different computing environment:
 # Apps intended for mobile devices were tested using a brand new, out-

of-the-box device. However, the apps run on users’ devices that contain
other apps competing for the device’s resources (for example, processing
power, memory, and bandwidth) and often have a battery that no longer
stores a full charge.

 # When using the cloud to provide Testing as a Service (TaaS), the cloud
servers had different amounts of utilization by other users and the Inter-
net provided different bandwidth depending on Internet usage.

 # The integration environment includes sensors, which were subject to
sensor drift (that is, an increase in sensor output error due to a slow degra-
dation of sensor properties).

 " Different physical environment. The test physical environment signifi-
cantly differed from real-world conditions of the physical environment
surrounding the operational system. For example, the actual physical envi-
ronment has different extremes of:

 # Acceleration (whether relatively constant or rapidly changing)
 # Ionizing radiation (for example, in outer space, nuclear reactors, or par-

ticle accelerators)
 # Network connectivity (for example, via radio, microwave, or Wi-Fi)

that is intermittent, noisy, does not have sufficient power[54], or is not
permitted to be used for security reasons

 # Poor electrical power (for example, spikes, surges, sags (or brownouts),
blackouts, noise, and EMI)

 # Temperature (high, low, or variable)
 # Vacuum (for example, of space)
 # Vibration

 ! Causes of poor fidelity. The lack of adequate test environment fidelity can be
due to:

 " Lack of funding
 " Inadequate tester expertise

lit
53]

lit
54],

lit
sensor drift

3.3 General Testing Pitfalls 121

GEN
-TTE-6

Poor Fidelity of Test Environm
ents

 " Difficulty in recreating the potentially huge number of device-internal con-
figurations (for example, existence of unrelated software and data running
on the same platform as the SUT[55])

 " Poor configuration management of the hardware or software
 " Lack of availability of the correct software, hardware, or data
 " Lack of availability of sufficient computing resources to match the produc-

tion system
 " Resource contention between SUT and other software executing on the

same platform
 " The high cost of replicating the physical environment
 " Prohibited access to classified networks, such as the US Department

of Defense Global Information Grid (GIG) and, more specifically, the
SIPRNet, for testing systems or software that has not yet been accredited
and certified as being sufficiently secure to operate.[56]

Recommendations
 ! Prepare:

 " Determine how the testers are going to address test-environment fidelity.
 " Document how the testers are going to address test-environment fidelity in

the test planning documentation.
 " For testing mobile devices, consider using a commercial company that spe-

cializes in testing:
 # On many devices
 # Networks

 ! Enable:
 " Provide the test labs with sufficient numbers of COTS, prototype, or Low

Rate of Initial Production (LRIP) system components (subsystems, soft-
ware, and hardware).

 " Provide sufficient funding to recreate the physical operational environment
in the physical test environment(s). Test using a shielded room but realize
that operational testing (OT) will still need to be performed.

 " Provide good configuration management of components under test and
test environments.

 " Provide tools to evaluate the fidelity of the test environment’s behavior.
 " Evaluate commercial companies that specialize in on-device testing and

network simulation and testing.
 ! Perform:

 " To the extent practical, use the operational versions of development tools
(for example, the compiler and software class libraries).

lit
55])

lit
56]

122 CHAPTER 3 DETAILED DESCRIPTIONS OF THE TESTING PITFALLS

GE
N

-T
TE

-7

In
ad

eq
ua

te
 T

es
t E

nv
ir

on
m

en
t Q

ua
lit

y

 " To the extent practical, test the software executing on the actual opera-
tional platforms, including software, hardware, and data.

 " Test on used hardware as well as new, just out-of-the-box devices.
 " To the extent practical, test the system in the operational physical

environment.
 " Perform operationally relevant testing using the actual operational soft-

ware, hardware, data, and physical environments.[57]
 " Recalibrate sensors to compensate for sensor drift.

 ! Verify:
 " To the extent practical, determine whether test simulators, emulators,

stubs, and drivers have the same characteristics as the eventual compo-
nents they are replacing during testing.

Related Pitfalls Inadequate Test Environment Quality (GEN-TTE-7), Unavailable
Components (TTS-INT-3)

INADEQUATE TEST ENVIRONMENT QUALITY (GEN-TTE-7)

Description The quality of one or more test environments is inadequate due to an
excessive number of defects.[58]

Potential Applicability This pitfall is potentially applicable anytime that one or
more test environments are being used.

Characteristic Symptoms
 ! An excessive number of false-positive or false-negative test results are traced

back to the poor quality of one or more test environments.
 ! The test environment often crashes during testing.
 ! Subsystem or hardware components of an integration test environment are

not certified (for example, flight certified, safety certified, security certified)
even though the actual subsystem or hardware components must be certified
prior to incorporating them into a deliverable system.

Potential Negative Consequences

 ! There are numerous false-positive or false-negative test results.

lit
57]

lit
58]

lit
Components (TTS-INT-3)

lit
Inadequate Test Environment Quality (GEN-TTE-7),

lit
Unavailable

3.4 Test-Type-Specific Pitfalls 167

TTS-U
N

T-2
Confl

ict of Interest

CONFLICT OF INTEREST (TTS-UNT-2)

Description Nothing is done to address the following conflict of interest that
exists when software developers test their own work products: They are being
asked to demonstrate that their own software is defective.

Potential Applicability This pitfall is potentially applicable anytime that a devel-
oper tests his or her own software, which is a very common industry practice. This
pitfall is primarily applicable to software unit testing, but it also applies when:

 ! Requirements engineers test their own executable requirements models.
 ! Architects test their own executable architectural models.
 ! Designers test their own executable design models.

Characteristic Symptoms
 ! Software developers unit test the same units that they personally developed.
 ! Software developers and managers think that unit testing is not sufficiently

important to require that professional testers perform it.
 ! Software developers spend far less time testing their software than developing it.
 ! There are few software unit-level test cases.
 ! The test cases concentrate heavily on demonstrating “sunny-day” paths and

largely ignore verifying that “rainy-day” exceptional paths work properly.

Potential Negative Consequences

 ! Unit testing is poorly and incompletely performed.[86]
 ! Unit test cases are poorly maintained, in spite of their value for regression

testing.
 ! An unacceptably large number of defects that should have been found during

unit testing pass through to integration and system testing, which are thereby
slowed down and made less efficient.

Potential Causes
 ! Developers tested the units that they personally developed.
 ! Developers expected their software to work correctly (an incorrect mindset), so:

lit
86]

168 CHAPTER 3 DETAILED DESCRIPTIONS OF THE TESTING PITFALLS

TT
S-

U
N

T-
2

Co
nfl

ic
t o

f I
nt

er
es

t

 " They tried to demonstrate that it works rather than show that it doesn’t work.
 " They developed as few test cases as practical.

 ! Developers felt that the testers would catch any defects they missed.[87]
 ! Developers thought that it was far more fun to write software than to test

software.
 ! Managers or developers thought that unit testing is relatively unimportant,

especially in relation to actually developing the software.

Recommendations
 ! Prepare:

 " Establish clear software unit testing success criteria that must be passed
before the unit can be delivered for integration and integration testing.

 ! Enable:
 " Provide software developers with training in how to:

 # Perform unit testing
 # Be aware of and counteract their conflict of interest

 " Provide developers with tools to help with automated unit testing.
 " Ensure that the developers understand the importance of finding highly

localized defects during unit testing, when they are much easier to local-
ize, analyze, and fix.

 ! Perform:
 " Have units tested by peers of the software developers who produced them.
 " Institute pair programming.
 " Require that the software developers institute unit-level Test Driven Devel-

opment (TDD).
 " Incentivize software developers to do a better job of testing their own

software.
 ! Verify:

 " Determine whether the software developers are clear about their testing
responsibilities.

 " Determine whether sufficient unit testing is taking place.
 " Determine (for example, via observation and conversation) whether the

software developers are truly trying to identify defects (that is, break their
own software).

Related Pitfalls Wrong Testing Mindset (GEN-SIC-1), Unclear Testing Respon-
sibilities (GEN-STF-2), Testing Does Not Drive Design and Implementation
(TTS-UNT-1)

lit
87]

lit
Wrong Testing Mindset (GEN-SIC-1),

lit
Unclear Testing Responsibilities
(GEN-STF-2),

lit
Testing Does Not Drive Design and Implementation
(TTS-UNT-1)

3.4 Test-Type-Specific Pitfalls 225

TTS-REG-1
Inadequate Regression Test A

utom
ation

 ! There is no SoS change control board (CCB) to officially mandate which
system(s) need to be fixed.

Recommendations
 ! Prepare:

 " Address fixing SoS-level defects in the individual system development
projects’ planning documents.

 ! Enable:
 " Set up an SoS CCB if one does not already exist.
 " Grant the SoS CCB the authority to allocate defects to system-level proj-

ects for fixing.
 " Work to develop an SoS mindset among the members of the individual sys-

tem development projects.
 ! Perform:

 " Assign representatives of the individual system projects to the SoS CCB
and involve them in SoS defect allocation.

 ! Verify:
 " Determine whether an SoS CCB exists and has adequate authority to allo-

cate defects to individual systems.

Related Pitfalls Inadequate Support from Individual System Projects (TTS-SoS-6)

3.4.6 Regression Testing Pitfalls
The following pitfalls are specific to performing regression testing, including
testing during maintenance:

 ! Inadequate Regression Test Automation (TTS-REG-1)
 ! Regression Testing Not Performed (TTS-REG-2)
 ! Inadequate Scope of Regression Testing (TTS-REG-3)
 ! Only Low-Level Regression Tests (TTS-REG-4)
 ! Test Resources Not Delivered for Maintenance (TTS-REG-5)
 ! Only Functional Regression Testing (TTS-REG-6)

INADEQUATE REGRESSION TEST AUTOMATION (TTS-REG-1)

Description Testers and developers have automated an insufficient number of
tests to enable adequate regression testing.[104]

Potential Applicability This pitfall is potentially applicable anytime regression test-
ing is needed (that is, almost always).

lit
104]

lit
Inadequate Support from Individual System Projects (TTS-SoS-6)

lit
Inadequate Regression Test Automation (TTS-REG-1)

lit
Regression Testing Not Performed (TTS-REG-2)

lit
Inadequate Scope of Regression Testing (TTS-REG-3)

lit
Only Low-Level Regression Tests (TTS-REG-4)

lit
! Test Resources Not Delivered for Maintenance (TTS-REG-5)

lit
Only Functional Regression Testing (TTS-REG-6)

226 CHAPTER 3 DETAILED DESCRIPTIONS OF THE TESTING PITFALLS

TT
S-

RE
G-

1
In

ad
eq

ua
te

 R
eg

re
ss

io
n

Te
st

 A
ut

om
at

io
n

Characteristic Symptoms
 ! Many or even most of the tests are being performed manually.

Potential Negative Consequences

 ! Manual regression testing takes so much time and effort that it is not done.
 ! If performed, regression testing is rushed, incomplete, and inadequate to

uncover a sufficient number of defects.
 ! Testers make an excessive number of mistakes while manually performing the

tests.
 ! Defects introduced while making changes in previously tested subsystems or

software remain in the operational system.
 ! The lack of adequate test automation prevents the use of an agile evolutionary

(iterative and incremental) development cycle.

Potential Causes
 ! Testing stakeholders (for example, managers and the developers of unit tests):

 " Mistakenly believed that regression testing is neither necessary nor cost
effective because:

 # Most changes are minor in scope.
 # System testing will catch any inadvertently introduced integration defects.
 # They are overconfident that their changes have not introduced any new

defects.
 " Were not aware of the:

 # Importance of regression testing
 # Value of automating regression testing
 # Dependence of agile evolutionary development processes on test

automation
 ! Automated regression testing was not an explicit part of the testing process.
 ! Automated regression testing was not incorporated into the test planning

documentation.
 ! The schedule contained little or no time for developing and maintaining auto-

mated tests.
 ! Tool support for automated regression testing was lacking (for example, due

to insufficient test budget) or impractical to use.

3.4 Test-Type-Specific Pitfalls 227

TTS-REG-1
Inadequate Regression Test A

utom
ation

 ! The initially developed automated tests were not maintained.
 ! The initially developed automated tests were not delivered with the system.
 ! The system was locked down (for example, Apple iPad and iPhone), thereby

making it difficult to perform automated installation and testing.

Recommendations
 ! Prepare:

 " Explicitly address automated regression testing in the project’s:
 # Test planning documentation
 # Test process documentation (for example, procedures and guidelines)
 # Master schedule
 # Work Breakdown Structure (WBS)

 ! Enable:
 " Provide training or mentoring to the testing stakeholders in the impor-

tance and value of automated regression testing.
 " Provide sufficient time in the schedule for automating and maintaining the

tests.
 " Provide sufficient funding to pay for tools that support test automation.
 " Ensure that adequate resources (staffing, budget, and schedule) are

planned and available for automating and maintaining the tests.
 ! Perform:

 " Have testers and developers collaborate on automating regression testing
whereby each plays the role for which they have adequate expertise and
experience:[105]

 # Testers determine types of regression testing; test-case-selection criteria;
test cases, including test preconditions, inputs, postconditions, and out-
puts; test-completion criteria, and so on.

 # Developers create automated regression tests, including configuring
the test automation tools, programming in the test cases, writing test
scripts, and whatever else is necessary.

 " Automate as many of the regression tests as is practical.
 " Make running the regression tests as easy as is practical so that they can be

run frequently (for example, every night).
 " Where appropriate, use commercially available test tools to automate

testing.
 " Ensure that both automated and manual test results are integrated into the

same overall test results database so that test reporting and monitoring are
seamless.

 " Maintain the automated tests as the system changes.
 " Deliver the automated tests with the tested system.

lit
105]

228 CHAPTER 3 DETAILED DESCRIPTIONS OF THE TESTING PITFALLS

TT
S-

RE
G-

2
Re

gr
es

si
on

 T
es

tin
g

N
ot

 P
er

fo
rm

ed

 ! Verify:
 " Determine whether the test planning documentation, test process docu-

mentation, and WBS adequately address automated regression testing.
 " Determine whether the schedule provides sufficient time to automate and

maintain the tests.
 " Determine whether a sufficient number of the tests have been automated.
 " Determine whether the automated tests function properly.
 " Determine whether the automated tests are properly maintained.
 " Determine whether the automated tests are delivered with the system.

Related Pitfalls No Separate Test Planning Documentation (GEN-TPS-1), Incom-
plete Test Planning (GEN-TPS-2), Inadequate Test Schedule (GEN-TPS-5), Unrealis-
tic Testing Expectations (GEN-SIC-2), Inadequate Test Resources (GEN-MGMT-1),
Inadequate Maintenance of Test Assets (GEN-PRO-9), Over-Reliance on Manual
Testing (GEN-TTE-1), Test Assets Not Delivered (GEN-TTE-8), Inadequate Test
Configuration Management (GEN-TTE-9)

REGRESSION TESTING NOT PERFORMED (TTS-REG-2)

Description Testers and maintainers perform insufficient regression testing to
determine if new defects have been accidentally introduced when changes are
made to the system.[106]

Potential Applicability This pitfall is potentially applicable anytime regression test-
ing is needed (that is, almost always).

Characteristic Symptoms
 ! No regression testing is being performed.
 ! Parts of the system are not retested after they are changed (for example, addi-

tions, modifications, and deletions due to refactoring and defect fixes).
 ! Appropriate parts of the system are not retested after interfacing parts are

changed.
 ! Previously tested software is being reused without modification.
 ! Defects trace to previously tested changed components and components

interfacing with changed components.

lit
106]

lit
No Separate Test Planning Documentation (GEN-TPS-1),

lit
Incomplete
Test Planning (GEN-TPS-2),

lit
Inadequate Test Schedule (GEN-TPS-5),

lit
Unrealistic
Testing Expectations (GEN-SIC-2),

lit
Inadequate Test Resources (GEN-MGMT-1),

lit
Inadequate Maintenance of Test Assets (GEN-PRO-9),

lit
Over-Reliance on Manual
Testing (GEN-TTE-1),

lit
Test Assets Not Delivered (GEN-TTE-8),

lit
Inadequate Test
Configuration Management (GEN-TTE-9)

	9780133748550_cover.pdf
	9780133748550_TOC.pdf
	9780133748550_chs01_02.pdf
	9780133748550_pgs42_43.pdf
	9780133748550_pgs47_49.pdf
	9780133748550_pgs118_122.pdf
	9780133748550_pgs167_168.pdf
	9780133748550_pgs225_228.pdf

