langchain-groq¶
Reference docs
This page contains reference documentation for Groq. See the docs for conceptual guides, tutorials, and examples on using Groq modules.
langchain_groq ¶
Groq integration for LangChain.
ChatGroq ¶
Bases: BaseChatModel
Groq Chat large language models API.
To use, you should have the environment variable GROQ_API_KEY set with your API key.
Any parameters that are valid to be passed to the groq.create call can be passed in, even if not explicitly saved on this class.
Setup
Install langchain-groq and set environment variable GROQ_API_KEY.
Key init args — completion params: model: Name of Groq model to use, e.g. llama-3.1-8b-instant. temperature: Sampling temperature. Ranges from 0.0 to 1.0. max_tokens: Max number of tokens to generate. reasoning_format: The format for reasoning output. Groq will default to raw if left undefined.
- `'parsed'`: Separates reasoning into a dedicated field while keeping the response concise. Reasoning will be returned in the `additional_kwargs.reasoning_content` field of the response. - `'raw'`: Includes reasoning within think tags (e.g. `<think>{reasoning_content}</think>`). - `'hidden'`: Returns only the final answer content. Note: this only suppresses reasoning content in the response; the model will still perform reasoning unless overridden in `reasoning_effort`. See the [Groq documentation](https://console.groq.com/docs/reasoning#reasoning) for more details and a list of supported models. model_kwargs: Holds any model parameters valid for create call not explicitly specified. Key init args — client params: timeout: Timeout for requests. max_retries: Max number of retries. api_key: Groq API key. If not passed in will be read from env var GROQ_API_KEY. base_url: Base URL path for API requests, leave blank if not using a proxy or service emulator. custom_get_token_ids: Optional encoder to use for counting tokens.
See full list of supported init args and their descriptions in the params section.
Instantiate
Invoke
messages = [ ("system", "You are a helpful translator. Translate the user sentence to French."), ("human", "I love programming."), ] model.invoke(messages) AIMessage(content='The English sentence "I love programming" can be translated to French as "J\'aime programmer". The word "programming" is translated as "programmer" in French.', response_metadata={'token_usage': {'completion_tokens': 38, 'prompt_tokens': 28, 'total_tokens': 66, 'completion_time': 0.057975474, 'prompt_time': 0.005366091, 'queue_time': None, 'total_time': 0.063341565}, 'model_name': 'llama-3.1-8b-instant', 'system_fingerprint': 'fp_c5f20b5bb1', 'finish_reason': 'stop', 'logprobs': None}, id='run-ecc71d70-e10c-4b69-8b8c-b8027d95d4b8-0') Stream
# Streaming `text` for each content chunk received for chunk in model.stream(messages): print(chunk.text, end="") content='' id='run-4e9f926b-73f5-483b-8ef5-09533d925853' content='The' id='run-4e9f926b-73f5-483b-8ef5-09533d925853' content=' English' id='run-4e9f926b-73f5-483b-8ef5-09533d925853' content=' sentence' id='run-4e9f926b-73f5-483b-8ef5-09533d925853' ... content=' program' id='run-4e9f926b-73f5-483b-8ef5-09533d925853' content='".' id='run-4e9f926b-73f5-483b-8ef5-09533d925853' content='' response_metadata={'finish_reason': 'stop'} id='run-4e9f926b-73f5-483b-8ef5-09533d925853 # Reconstructing a full response stream = model.stream(messages) full = next(stream) for chunk in stream: full += chunk full AIMessageChunk(content='The English sentence "I love programming" can be translated to French as "J\'aime programmer". Here\'s the breakdown of the sentence: "J\'aime" is the French equivalent of " I love", and "programmer" is the French infinitive for "to program". So, the literal translation is "I love to program". However, in English we often omit the "to" when talking about activities we love, and the same applies to French. Therefore, "J\'aime programmer" is the correct and natural way to express "I love programming" in French.', response_metadata={'finish_reason': 'stop'}, id='run-a3c35ac4-0750-4d08-ac55-bfc63805de76') Async
AIMessage(content='The English sentence "I love programming" can be translated to French as "J\'aime programmer". The word "programming" is translated as "programmer" in French. I hope this helps! Let me know if you have any other questions.', response_metadata={'token_usage': {'completion_tokens': 53, 'prompt_tokens': 28, 'total_tokens': 81, 'completion_time': 0.083623752, 'prompt_time': 0.007365126, 'queue_time': None, 'total_time': 0.090988878}, 'model_name': 'llama-3.1-8b-instant', 'system_fingerprint': 'fp_c5f20b5bb1', 'finish_reason': 'stop', 'logprobs': None}, id='run-897f3391-1bea-42e2-82e0-686e2367bcf8-0') Tool calling
from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' location: str = Field(..., description="The city and state, e.g. San Francisco, CA") class GetPopulation(BaseModel): '''Get the current population in a given location''' location: str = Field(..., description="The city and state, e.g. San Francisco, CA") model_with_tools = model.bind_tools([GetWeather, GetPopulation]) ai_msg = model_with_tools.invoke("What is the population of NY?") ai_msg.tool_calls See ChatGroq.bind_tools() method for more.
Structured output
from typing import Optional from pydantic import BaseModel, Field class Joke(BaseModel): '''Joke to tell user.''' setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") rating: int | None = Field(description="How funny the joke is, from 1 to 10") structured_model = model.with_structured_output(Joke) structured_model.invoke("Tell me a joke about cats") Joke( setup="Why don't cats play poker in the jungle?", punchline="Too many cheetahs!", rating=None, ) See ChatGroq.with_structured_output() for more.
| METHOD | DESCRIPTION |
|---|---|
get_name | Get the name of the |
get_input_schema | Get a Pydantic model that can be used to validate input to the |
get_input_jsonschema | Get a JSON schema that represents the input to the |
get_output_schema | Get a Pydantic model that can be used to validate output to the |
get_output_jsonschema | Get a JSON schema that represents the output of the |
config_schema | The type of config this |
get_config_jsonschema | Get a JSON schema that represents the config of the |
get_graph | Return a graph representation of this |
get_prompts | Return a list of prompts used by this |
__or__ | Runnable "or" operator. |
__ror__ | Runnable "reverse-or" operator. |
pipe | Pipe |
pick | Pick keys from the output |
assign | Assigns new fields to the |
invoke | Transform a single input into an output. |
ainvoke | Transform a single input into an output. |
batch | Default implementation runs invoke in parallel using a thread pool executor. |
batch_as_completed | Run |
abatch | Default implementation runs |
abatch_as_completed | Run |
stream | Default implementation of |
astream | Default implementation of |
astream_log | Stream all output from a |
astream_events | Generate a stream of events. |
transform | Transform inputs to outputs. |
atransform | Transform inputs to outputs. |
bind | Bind arguments to a |
with_config | Bind config to a |
with_listeners | Bind lifecycle listeners to a |
with_alisteners | Bind async lifecycle listeners to a |
with_types | Bind input and output types to a |
with_retry | Create a new |
map | Return a new |
with_fallbacks | Add fallbacks to a |
as_tool | Create a |
__init__ | |
get_lc_namespace | Get the namespace of the LangChain object. |
lc_id | Return a unique identifier for this class for serialization purposes. |
to_json | Serialize the |
to_json_not_implemented | Serialize a "not implemented" object. |
configurable_fields | Configure particular |
configurable_alternatives | Configure alternatives for |
set_verbose | If verbose is |
generate_prompt | Pass a sequence of prompts to the model and return model generations. |
agenerate_prompt | Asynchronously pass a sequence of prompts and return model generations. |
get_token_ids | Return the ordered IDs of the tokens in a text. |
get_num_tokens | Get the number of tokens present in the text. |
get_num_tokens_from_messages | Get the number of tokens in the messages. |
generate | Pass a sequence of prompts to the model and return model generations. |
agenerate | Asynchronously pass a sequence of prompts to a model and return generations. |
dict | Return a dictionary of the LLM. |
build_extra | Build extra kwargs from additional params that were passed in. |
validate_environment | Validate that api key and python package exists in environment. |
is_lc_serializable | Return whether this model can be serialized by LangChain. |
bind_tools | Bind tool-like objects to this chat model. |
with_structured_output | Model wrapper that returns outputs formatted to match the given schema. |
name class-attribute instance-attribute ¶
name: str | None = None The name of the Runnable. Used for debugging and tracing.
input_schema property ¶
The type of input this Runnable accepts specified as a Pydantic model.
output_schema property ¶
Output schema.
The type of output this Runnable produces specified as a Pydantic model.
config_specs property ¶
config_specs: list[ConfigurableFieldSpec] List configurable fields for this Runnable.
lc_attributes property ¶
lc_attributes: dict List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
Default is an empty dictionary.
cache class-attribute instance-attribute ¶
Whether to cache the response.
- If
True, will use the global cache. - If
False, will not use a cache - If
None, will use the global cache if it's set, otherwise no cache. - If instance of
BaseCache, will use the provided cache.
Caching is not currently supported for streaming methods of models.
verbose class-attribute instance-attribute ¶
Whether to print out response text.
callbacks class-attribute instance-attribute ¶
callbacks: Callbacks = Field(default=None, exclude=True) Callbacks to add to the run trace.
tags class-attribute instance-attribute ¶
Tags to add to the run trace.
metadata class-attribute instance-attribute ¶
Metadata to add to the run trace.
custom_get_token_ids class-attribute instance-attribute ¶
Optional encoder to use for counting tokens.
rate_limiter class-attribute instance-attribute ¶
rate_limiter: BaseRateLimiter | None = Field(default=None, exclude=True) An optional rate limiter to use for limiting the number of requests.
disable_streaming class-attribute instance-attribute ¶
Whether to disable streaming for this model.
If streaming is bypassed, then stream/astream/astream_events will defer to invoke/ainvoke.
- If
True, will always bypass streaming case. - If
'tool_calling', will bypass streaming case only when the model is called with atoolskeyword argument. In other words, LangChain will automatically switch to non-streaming behavior (invoke) only when the tools argument is provided. This offers the best of both worlds. - If
False(Default), will always use streaming case if available.
The main reason for this flag is that code might be written using stream and a user may want to swap out a given model for another model whose the implementation does not properly support streaming.
output_version class-attribute instance-attribute ¶
Version of AIMessage output format to store in message content.
AIMessage.content_blocks will lazily parse the contents of content into a standard format. This flag can be used to additionally store the standard format in message content, e.g., for serialization purposes.
Supported values:
'v0': provider-specific format in content (can lazily-parse withcontent_blocks)'v1': standardized format in content (consistent withcontent_blocks)
Partner packages (e.g., langchain-openai) can also use this field to roll out new content formats in a backward-compatible way.
Added in langchain-core 1.0.0
profile class-attribute instance-attribute ¶
profile: ModelProfile | None = Field(default=None, exclude=True) Profile detailing model capabilities.
Beta feature
This is a beta feature. The format of model profiles is subject to change.
If not specified, automatically loaded from the provider package on initialization if data is available.
Example profile data includes context window sizes, supported modalities, or support for tool calling, structured output, and other features.
Added in langchain-core 1.1.0
model_name class-attribute instance-attribute ¶
Model name to use.
temperature class-attribute instance-attribute ¶
temperature: float = 0.7 What sampling temperature to use.
stop class-attribute instance-attribute ¶
Default stop sequences.
reasoning_format class-attribute instance-attribute ¶
The format for reasoning output. Groq will default to raw if left undefined.
'parsed': Separates reasoning into a dedicated field while keeping the response concise. Reasoning will be returned in theadditional_kwargs.reasoning_contentfield of the response.'raw': Includes reasoning within think tags (e.g.<think>{reasoning_content}</think>).'hidden': Returns only the final answer content. Note: this only suppresses reasoning content in the response; the model will still perform reasoning unless overridden inreasoning_effort.
See the Groq documentation for more details and a list of supported models.
reasoning_effort class-attribute instance-attribute ¶
The level of effort the model will put into reasoning. Groq will default to enabling reasoning if left undefined.
See the Groq documentation for more details and a list of options and models that support setting a reasoning effort.
model_kwargs class-attribute instance-attribute ¶
Holds any model parameters valid for create call not explicitly specified.
groq_api_key class-attribute instance-attribute ¶
groq_api_key: SecretStr | None = Field( alias="api_key", default_factory=secret_from_env("GROQ_API_KEY", default=None) ) Automatically inferred from env var GROQ_API_KEY if not provided.
groq_api_base class-attribute instance-attribute ¶
groq_api_base: str | None = Field( alias="base_url", default_factory=from_env("GROQ_API_BASE", default=None) ) Base URL path for API requests. Leave blank if not using a proxy or service emulator.
request_timeout class-attribute instance-attribute ¶
Timeout for requests to Groq completion API. Can be float, httpx.Timeout or None.
max_retries class-attribute instance-attribute ¶
max_retries: int = 2 Maximum number of retries to make when generating.
streaming class-attribute instance-attribute ¶
streaming: bool = False Whether to stream the results or not.
n class-attribute instance-attribute ¶
n: int = 1 Number of chat completions to generate for each prompt.
max_tokens class-attribute instance-attribute ¶
max_tokens: int | None = None Maximum number of tokens to generate.
service_tier class-attribute instance-attribute ¶
Optional parameter that you can include to specify the service tier you'd like to use for requests.
'on_demand': Default.'flex': On-demand processing when capacity is available, with rapid timeouts if resources are constrained. Provides balance between performance and reliability for workloads that don't require guaranteed processing.'auto': Uses on-demand rate limits, then falls back to'flex'if those limits are exceeded
See the Groq documentation for more details and a list of service tiers and descriptions.
http_client class-attribute instance-attribute ¶
http_client: Any | None = None Optional httpx.Client.
http_async_client class-attribute instance-attribute ¶
http_async_client: Any | None = None Optional httpx.AsyncClient.
Only used for async invocations. Must specify http_client as well if you'd like a custom client for sync invocations.
get_name ¶
get_input_schema ¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel] Get a Pydantic model that can be used to validate input to the Runnable.
Runnable objects that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the Runnable is invoked with.
This method allows to get an input schema for a specific configuration.
| PARAMETER | DESCRIPTION |
|---|---|
config | A config to use when generating the schema. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
type[BaseModel] | A Pydantic model that can be used to validate input. |
get_input_jsonschema ¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any] Get a JSON schema that represents the input to the Runnable.
| PARAMETER | DESCRIPTION |
|---|---|
config | A config to use when generating the schema. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
dict[str, Any] | A JSON schema that represents the input to the |
Example
Added in langchain-core 0.3.0
get_output_schema ¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel] Get a Pydantic model that can be used to validate output to the Runnable.
Runnable objects that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the Runnable is invoked with.
This method allows to get an output schema for a specific configuration.
| PARAMETER | DESCRIPTION |
|---|---|
config | A config to use when generating the schema. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
type[BaseModel] | A Pydantic model that can be used to validate output. |
get_output_jsonschema ¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any] Get a JSON schema that represents the output of the Runnable.
| PARAMETER | DESCRIPTION |
|---|---|
config | A config to use when generating the schema. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
dict[str, Any] | A JSON schema that represents the output of the |
Example
Added in langchain-core 0.3.0
config_schema ¶
The type of config this Runnable accepts specified as a Pydantic model.
To mark a field as configurable, see the configurable_fields and configurable_alternatives methods.
| PARAMETER | DESCRIPTION |
|---|---|
include | A list of fields to include in the config schema. |
| RETURNS | DESCRIPTION |
|---|---|
type[BaseModel] | A Pydantic model that can be used to validate config. |
get_config_jsonschema ¶
get_graph ¶
get_graph(config: RunnableConfig | None = None) -> Graph Return a graph representation of this Runnable.
get_prompts ¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate] Return a list of prompts used by this Runnable.
__or__ ¶
__or__( other: Runnable[Any, Other] | Callable[[Iterator[Any]], Iterator[Other]] | Callable[[AsyncIterator[Any]], AsyncIterator[Other]] | Callable[[Any], Other] | Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any], ) -> RunnableSerializable[Input, Other] Runnable "or" operator.
Compose this Runnable with another object to create a RunnableSequence.
| PARAMETER | DESCRIPTION |
|---|---|
other | Another TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Other] | A new |
__ror__ ¶
__ror__( other: Runnable[Other, Any] | Callable[[Iterator[Other]], Iterator[Any]] | Callable[[AsyncIterator[Other]], AsyncIterator[Any]] | Callable[[Other], Any] | Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any], ) -> RunnableSerializable[Other, Output] Runnable "reverse-or" operator.
Compose this Runnable with another object to create a RunnableSequence.
| PARAMETER | DESCRIPTION |
|---|---|
other | Another TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Other, Output] | A new |
pipe ¶
pipe( *others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None ) -> RunnableSerializable[Input, Other] Pipe Runnable objects.
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
Equivalent to RunnableSequence(self, *others) or self | others[0] | ...
Example
from langchain_core.runnables import RunnableLambda def add_one(x: int) -> int: return x + 1 def mul_two(x: int) -> int: return x * 2 runnable_1 = RunnableLambda(add_one) runnable_2 = RunnableLambda(mul_two) sequence = runnable_1.pipe(runnable_2) # Or equivalently: # sequence = runnable_1 | runnable_2 # sequence = RunnableSequence(first=runnable_1, last=runnable_2) sequence.invoke(1) await sequence.ainvoke(1) # -> 4 sequence.batch([1, 2, 3]) await sequence.abatch([1, 2, 3]) # -> [4, 6, 8] | PARAMETER | DESCRIPTION |
|---|---|
*others | Other TYPE: |
name | An optional name for the resulting TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Other] | A new |
pick ¶
Pick keys from the output dict of this Runnable.
Pick a single key
import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) chain = RunnableMap(str=as_str, json=as_json) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]} json_only_chain = chain.pick("json") json_only_chain.invoke("[1, 2, 3]") # -> [1, 2, 3] Pick a list of keys
from typing import Any import json from langchain_core.runnables import RunnableLambda, RunnableMap as_str = RunnableLambda(str) as_json = RunnableLambda(json.loads) def as_bytes(x: Any) -> bytes: return bytes(x, "utf-8") chain = RunnableMap( str=as_str, json=as_json, bytes=RunnableLambda(as_bytes) ) chain.invoke("[1, 2, 3]") # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"} json_and_bytes_chain = chain.pick(["json", "bytes"]) json_and_bytes_chain.invoke("[1, 2, 3]") # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"} | PARAMETER | DESCRIPTION |
|---|---|
keys | A key or list of keys to pick from the output dict. |
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Any, Any] | a new |
assign ¶
assign( **kwargs: Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any] | Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]], ) -> RunnableSerializable[Any, Any] Assigns new fields to the dict output of this Runnable.
from langchain_core.language_models.fake import FakeStreamingListLLM from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import SystemMessagePromptTemplate from langchain_core.runnables import Runnable from operator import itemgetter prompt = ( SystemMessagePromptTemplate.from_template("You are a nice assistant.") + "{question}" ) model = FakeStreamingListLLM(responses=["foo-lish"]) chain: Runnable = prompt | model | {"str": StrOutputParser()} chain_with_assign = chain.assign(hello=itemgetter("str") | model) print(chain_with_assign.input_schema.model_json_schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} print(chain_with_assign.output_schema.model_json_schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} | PARAMETER | DESCRIPTION |
|---|---|
**kwargs | A mapping of keys to TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Any, Any] | A new |
invoke ¶
invoke( input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: list[str] | None = None, **kwargs: Any, ) -> AIMessage Transform a single input into an output.
| PARAMETER | DESCRIPTION |
|---|---|
input | The input to the TYPE: |
config | A config to use when invoking the The config supports standard keys like Please refer to TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
Output | The output of the |
ainvoke async ¶
ainvoke( input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: list[str] | None = None, **kwargs: Any, ) -> AIMessage Transform a single input into an output.
| PARAMETER | DESCRIPTION |
|---|---|
input | The input to the TYPE: |
config | A config to use when invoking the The config supports standard keys like Please refer to TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
Output | The output of the |
batch ¶
batch( inputs: list[Input], config: RunnableConfig | list[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None, ) -> list[Output] Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
| PARAMETER | DESCRIPTION |
|---|---|
inputs | A list of inputs to the TYPE: |
config | A config to use when invoking the Please refer to TYPE: |
return_exceptions | Whether to return exceptions instead of raising them. TYPE: |
**kwargs | Additional keyword arguments to pass to the TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
list[Output] | A list of outputs from the |
batch_as_completed ¶
batch_as_completed( inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None, ) -> Iterator[tuple[int, Output | Exception]] Run invoke in parallel on a list of inputs.
Yields results as they complete.
| PARAMETER | DESCRIPTION |
|---|---|
inputs | A list of inputs to the TYPE: |
config | A config to use when invoking the The config supports standard keys like Please refer to TYPE: |
return_exceptions | Whether to return exceptions instead of raising them. TYPE: |
**kwargs | Additional keyword arguments to pass to the TYPE: |
| YIELDS | DESCRIPTION |
|---|---|
tuple[int, Output | Exception] | Tuples of the index of the input and the output from the |
abatch async ¶
abatch( inputs: list[Input], config: RunnableConfig | list[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None, ) -> list[Output] Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently; e.g., if the underlying Runnable uses an API which supports a batch mode.
| PARAMETER | DESCRIPTION |
|---|---|
inputs | A list of inputs to the TYPE: |
config | A config to use when invoking the The config supports standard keys like Please refer to TYPE: |
return_exceptions | Whether to return exceptions instead of raising them. TYPE: |
**kwargs | Additional keyword arguments to pass to the TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
list[Output] | A list of outputs from the |
abatch_as_completed async ¶
abatch_as_completed( inputs: Sequence[Input], config: RunnableConfig | Sequence[RunnableConfig] | None = None, *, return_exceptions: bool = False, **kwargs: Any | None, ) -> AsyncIterator[tuple[int, Output | Exception]] Run ainvoke in parallel on a list of inputs.
Yields results as they complete.
| PARAMETER | DESCRIPTION |
|---|---|
inputs | A list of inputs to the TYPE: |
config | A config to use when invoking the The config supports standard keys like Please refer to TYPE: |
return_exceptions | Whether to return exceptions instead of raising them. TYPE: |
**kwargs | Additional keyword arguments to pass to the TYPE: |
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[tuple[int, Output | Exception]] | A tuple of the index of the input and the output from the |
stream ¶
stream( input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: list[str] | None = None, **kwargs: Any, ) -> Iterator[AIMessageChunk] Default implementation of stream, which calls invoke.
Subclasses must override this method if they support streaming output.
| PARAMETER | DESCRIPTION |
|---|---|
input | The input to the TYPE: |
config | The config to use for the TYPE: |
**kwargs | Additional keyword arguments to pass to the TYPE: |
| YIELDS | DESCRIPTION |
|---|---|
Output | The output of the |
astream async ¶
astream( input: LanguageModelInput, config: RunnableConfig | None = None, *, stop: list[str] | None = None, **kwargs: Any, ) -> AsyncIterator[AIMessageChunk] Default implementation of astream, which calls ainvoke.
Subclasses must override this method if they support streaming output.
| PARAMETER | DESCRIPTION |
|---|---|
input | The input to the TYPE: |
config | The config to use for the TYPE: |
**kwargs | Additional keyword arguments to pass to the TYPE: |
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[Output] | The output of the |
astream_log async ¶
astream_log( input: Any, config: RunnableConfig | None = None, *, diff: bool = True, with_streamed_output_list: bool = True, include_names: Sequence[str] | None = None, include_types: Sequence[str] | None = None, include_tags: Sequence[str] | None = None, exclude_names: Sequence[str] | None = None, exclude_types: Sequence[str] | None = None, exclude_tags: Sequence[str] | None = None, **kwargs: Any, ) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog] Stream all output from a Runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The Jsonpatch ops can be applied in order to construct state.
| PARAMETER | DESCRIPTION |
|---|---|
input | The input to the TYPE: |
config | The config to use for the TYPE: |
diff | Whether to yield diffs between each step or the current state. TYPE: |
with_streamed_output_list | Whether to yield the TYPE: |
include_names | Only include logs with these names. |
include_types | Only include logs with these types. |
include_tags | Only include logs with these tags. |
exclude_names | Exclude logs with these names. |
exclude_types | Exclude logs with these types. |
exclude_tags | Exclude logs with these tags. |
**kwargs | Additional keyword arguments to pass to the TYPE: |
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog] | A |
astream_events async ¶
astream_events( input: Any, config: RunnableConfig | None = None, *, version: Literal["v1", "v2"] = "v2", include_names: Sequence[str] | None = None, include_types: Sequence[str] | None = None, include_tags: Sequence[str] | None = None, exclude_names: Sequence[str] | None = None, exclude_types: Sequence[str] | None = None, exclude_tags: Sequence[str] | None = None, **kwargs: Any, ) -> AsyncIterator[StreamEvent] Generate a stream of events.
Use to create an iterator over StreamEvent that provide real-time information about the progress of the Runnable, including StreamEvent from intermediate results.
A StreamEvent is a dictionary with the following schema:
event: Event names are of the format:on_[runnable_type]_(start|stream|end).name: The name of theRunnablethat generated the event.run_id: Randomly generated ID associated with the given execution of theRunnablethat emitted the event. A childRunnablethat gets invoked as part of the execution of a parentRunnableis assigned its own unique ID.parent_ids: The IDs of the parent runnables that generated the event. The rootRunnablewill have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags: The tags of theRunnablethat generated the event.metadata: The metadata of theRunnablethat generated the event.data: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
Note
This reference table is for the v2 version of the schema.
| event | name | chunk | input | output |
|---|---|---|---|---|
on_chat_model_start | '[model name]' | {"messages": [[SystemMessage, HumanMessage]]} | ||
on_chat_model_stream | '[model name]' | AIMessageChunk(content="hello") | ||
on_chat_model_end | '[model name]' | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world") | |
on_llm_start | '[model name]' | {'input': 'hello'} | ||
on_llm_stream | '[model name]' | 'Hello' | ||
on_llm_end | '[model name]' | 'Hello human!' | ||
on_chain_start | 'format_docs' | |||
on_chain_stream | 'format_docs' | 'hello world!, goodbye world!' | ||
on_chain_end | 'format_docs' | [Document(...)] | 'hello world!, goodbye world!' | |
on_tool_start | 'some_tool' | {"x": 1, "y": "2"} | ||
on_tool_end | 'some_tool' | {"x": 1, "y": "2"} | ||
on_retriever_start | '[retriever name]' | {"query": "hello"} | ||
on_retriever_end | '[retriever name]' | {"query": "hello"} | [Document(...), ..] | |
on_prompt_start | '[template_name]' | {"question": "hello"} | ||
on_prompt_end | '[template_name]' | {"question": "hello"} | ChatPromptValue(messages: [SystemMessage, ...]) |
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
| Attribute | Type | Description |
|---|---|---|
name | str | A user defined name for the event. |
data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. |
Here are declarations associated with the standard events shown above:
format_docs:
def format_docs(docs: list[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs) some_tool:
prompt:
template = ChatPromptTemplate.from_messages( [ ("system", "You are Cat Agent 007"), ("human", "{question}"), ] ).with_config({"run_name": "my_template", "tags": ["my_template"]}) Example
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # Will produce the following events # (run_id, and parent_ids has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ] from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event) | PARAMETER | DESCRIPTION |
|---|---|
input | The input to the TYPE: |
config | The config to use for the TYPE: |
version | The version of the schema to use, either Users should use
No default will be assigned until the API is stabilized. custom events will only be surfaced in TYPE: |
include_names | Only include events from |
include_types | Only include events from |
include_tags | Only include events from |
exclude_names | Exclude events from |
exclude_types | Exclude events from |
exclude_tags | Exclude events from |
**kwargs | Additional keyword arguments to pass to the These will be passed to TYPE: |
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[StreamEvent] | An async stream of |
| RAISES | DESCRIPTION |
|---|---|
NotImplementedError | If the version is not |
transform ¶
transform( input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None ) -> Iterator[Output] Transform inputs to outputs.
Default implementation of transform, which buffers input and calls astream.
Subclasses must override this method if they can start producing output while input is still being generated.
| PARAMETER | DESCRIPTION |
|---|---|
input | An iterator of inputs to the TYPE: |
config | The config to use for the TYPE: |
**kwargs | Additional keyword arguments to pass to the TYPE: |
| YIELDS | DESCRIPTION |
|---|---|
Output | The output of the |
atransform async ¶
atransform( input: AsyncIterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None, ) -> AsyncIterator[Output] Transform inputs to outputs.
Default implementation of atransform, which buffers input and calls astream.
Subclasses must override this method if they can start producing output while input is still being generated.
| PARAMETER | DESCRIPTION |
|---|---|
input | An async iterator of inputs to the TYPE: |
config | The config to use for the TYPE: |
**kwargs | Additional keyword arguments to pass to the TYPE: |
| YIELDS | DESCRIPTION |
|---|---|
AsyncIterator[Output] | The output of the |
bind ¶
Bind arguments to a Runnable, returning a new Runnable.
Useful when a Runnable in a chain requires an argument that is not in the output of the previous Runnable or included in the user input.
| PARAMETER | DESCRIPTION |
|---|---|
**kwargs | The arguments to bind to the TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output] | A new |
Example
from langchain_ollama import ChatOllama from langchain_core.output_parsers import StrOutputParser model = ChatOllama(model="llama3.1") # Without bind chain = model | StrOutputParser() chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind chain = model.bind(stop=["three"]) | StrOutputParser() chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two' with_config ¶
with_config( config: RunnableConfig | None = None, **kwargs: Any ) -> Runnable[Input, Output] Bind config to a Runnable, returning a new Runnable.
| PARAMETER | DESCRIPTION |
|---|---|
config | The config to bind to the TYPE: |
**kwargs | Additional keyword arguments to pass to the TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output] | A new |
with_listeners ¶
with_listeners( *, on_start: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None, on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None, on_error: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None, ) -> Runnable[Input, Output] Bind lifecycle listeners to a Runnable, returning a new Runnable.
The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
| PARAMETER | DESCRIPTION |
|---|---|
on_start | Called before the TYPE: |
on_end | Called after the TYPE: |
on_error | Called if the TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output] | A new |
Example
from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep: int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2) with_alisteners ¶
with_alisteners( *, on_start: AsyncListener | None = None, on_end: AsyncListener | None = None, on_error: AsyncListener | None = None, ) -> Runnable[Input, Output] Bind async lifecycle listeners to a Runnable.
Returns a new Runnable.
The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.
| PARAMETER | DESCRIPTION |
|---|---|
on_start | Called asynchronously before the TYPE: |
on_end | Called asynchronously after the TYPE: |
on_error | Called asynchronously if the TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output] | A new |
Example
from langchain_core.runnables import RunnableLambda, Runnable from datetime import datetime, timezone import time import asyncio def format_t(timestamp: float) -> str: return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat() async def test_runnable(time_to_sleep: int): print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}") await asyncio.sleep(time_to_sleep) print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}") async def fn_start(run_obj: Runnable): print(f"on start callback starts at {format_t(time.time())}") await asyncio.sleep(3) print(f"on start callback ends at {format_t(time.time())}") async def fn_end(run_obj: Runnable): print(f"on end callback starts at {format_t(time.time())}") await asyncio.sleep(2) print(f"on end callback ends at {format_t(time.time())}") runnable = RunnableLambda(test_runnable).with_alisteners( on_start=fn_start, on_end=fn_end ) async def concurrent_runs(): await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3)) asyncio.run(concurrent_runs()) # Result: # on start callback starts at 2025-03-01T07:05:22.875378+00:00 # on start callback starts at 2025-03-01T07:05:22.875495+00:00 # on start callback ends at 2025-03-01T07:05:25.878862+00:00 # on start callback ends at 2025-03-01T07:05:25.878947+00:00 # Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00 # Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00 # Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00 # on end callback starts at 2025-03-01T07:05:27.882360+00:00 # Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00 # on end callback starts at 2025-03-01T07:05:28.882428+00:00 # on end callback ends at 2025-03-01T07:05:29.883893+00:00 # on end callback ends at 2025-03-01T07:05:30.884831+00:00 with_types ¶
with_types( *, input_type: type[Input] | None = None, output_type: type[Output] | None = None ) -> Runnable[Input, Output] Bind input and output types to a Runnable, returning a new Runnable.
| PARAMETER | DESCRIPTION |
|---|---|
input_type | The input type to bind to the TYPE: |
output_type | The output type to bind to the TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output] | A new |
with_retry ¶
with_retry( *, retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,), wait_exponential_jitter: bool = True, exponential_jitter_params: ExponentialJitterParams | None = None, stop_after_attempt: int = 3, ) -> Runnable[Input, Output] Create a new Runnable that retries the original Runnable on exceptions.
| PARAMETER | DESCRIPTION |
|---|---|
retry_if_exception_type | A tuple of exception types to retry on. TYPE: |
wait_exponential_jitter | Whether to add jitter to the wait time between retries. TYPE: |
stop_after_attempt | The maximum number of attempts to make before giving up. TYPE: |
exponential_jitter_params | Parameters for TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
Runnable[Input, Output] | A new |
Example
from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert count == 2 map ¶
with_fallbacks ¶
with_fallbacks( fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,), exception_key: str | None = None, ) -> RunnableWithFallbacks[Input, Output] Add fallbacks to a Runnable, returning a new Runnable.
The new Runnable will try the original Runnable, and then each fallback in order, upon failures.
| PARAMETER | DESCRIPTION |
|---|---|
fallbacks | A sequence of runnables to try if the original |
exceptions_to_handle | A tuple of exception types to handle. TYPE: |
exception_key | If If If used, the base TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
RunnableWithFallbacks[Input, Output] | A new |
Example
from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print("".join(runnable.stream({}))) # foo bar | PARAMETER | DESCRIPTION |
|---|---|
fallbacks | A sequence of runnables to try if the original |
exceptions_to_handle | A tuple of exception types to handle. TYPE: |
exception_key | If If If used, the base TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
RunnableWithFallbacks[Input, Output] | A new |
as_tool ¶
as_tool( args_schema: type[BaseModel] | None = None, *, name: str | None = None, description: str | None = None, arg_types: dict[str, type] | None = None, ) -> BaseTool Create a BaseTool from a Runnable.
as_tool will instantiate a BaseTool with a name, description, and args_schema from a Runnable. Where possible, schemas are inferred from runnable.get_input_schema.
Alternatively (e.g., if the Runnable takes a dict as input and the specific dict keys are not typed), the schema can be specified directly with args_schema.
You can also pass arg_types to just specify the required arguments and their types.
| PARAMETER | DESCRIPTION |
|---|---|
args_schema | The schema for the tool. |
name | The name of the tool. TYPE: |
description | The description of the tool. TYPE: |
arg_types | A dictionary of argument names to types. |
| RETURNS | DESCRIPTION |
|---|---|
BaseTool | A |
TypedDict input
dict input, specifying schema via args_schema
from typing import Any from pydantic import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) class FSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") b: list[int] = Field(..., description="List of ints") runnable = RunnableLambda(f) as_tool = runnable.as_tool(FSchema) as_tool.invoke({"a": 3, "b": [1, 2]}) dict input, specifying schema via arg_types
get_lc_namespace classmethod ¶
lc_id classmethod ¶
Return a unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
For example, for the class langchain.llms.openai.OpenAI, the id is ["langchain", "llms", "openai", "OpenAI"].
to_json ¶
Serialize the Runnable to JSON.
| RETURNS | DESCRIPTION |
|---|---|
SerializedConstructor | SerializedNotImplemented | A JSON-serializable representation of the |
to_json_not_implemented ¶
Serialize a "not implemented" object.
| RETURNS | DESCRIPTION |
|---|---|
SerializedNotImplemented |
|
configurable_fields ¶
configurable_fields( **kwargs: AnyConfigurableField, ) -> RunnableSerializable[Input, Output] Configure particular Runnable fields at runtime.
| PARAMETER | DESCRIPTION |
|---|---|
**kwargs | A dictionary of TYPE: |
| RAISES | DESCRIPTION |
|---|---|
ValueError | If a configuration key is not found in the |
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Output] | A new |
Example
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print( "max_tokens_200: ", model.with_config(configurable={"output_token_number": 200}) .invoke("tell me something about chess") .content, ) configurable_alternatives ¶
configurable_alternatives( which: ConfigurableField, *, default_key: str = "default", prefix_keys: bool = False, **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]], ) -> RunnableSerializable[Input, Output] Configure alternatives for Runnable objects that can be set at runtime.
| PARAMETER | DESCRIPTION |
|---|---|
which | The TYPE: |
default_key | The default key to use if no alternative is selected. TYPE: |
prefix_keys | Whether to prefix the keys with the TYPE: |
**kwargs | A dictionary of keys to TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
RunnableSerializable[Input, Output] | A new |
Example
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-sonnet-4-5-20250929" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI(), ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config(configurable={"llm": "openai"}) .invoke("which organization created you?") .content ) set_verbose ¶
generate_prompt ¶
generate_prompt( prompts: list[PromptValue], stop: list[str] | None = None, callbacks: Callbacks = None, **kwargs: Any, ) -> LLMResult Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
| PARAMETER | DESCRIPTION |
|---|---|
prompts | List of A TYPE: |
stop | Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks |
Used for executing additional functionality, such as logging or streaming, throughout generation. TYPE: |
**kwargs | Arbitrary additional keyword arguments. These are usually passed to the model provider API call. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
LLMResult | An |
agenerate_prompt async ¶
agenerate_prompt( prompts: list[PromptValue], stop: list[str] | None = None, callbacks: Callbacks = None, **kwargs: Any, ) -> LLMResult Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
| PARAMETER | DESCRIPTION |
|---|---|
prompts | List of A TYPE: |
stop | Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks |
Used for executing additional functionality, such as logging or streaming, throughout generation. TYPE: |
**kwargs | Arbitrary additional keyword arguments. These are usually passed to the model provider API call. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
LLMResult | An |
get_token_ids ¶
get_num_tokens ¶
Get the number of tokens present in the text.
Useful for checking if an input fits in a model's context window.
This should be overridden by model-specific implementations to provide accurate token counts via model-specific tokenizers.
| PARAMETER | DESCRIPTION |
|---|---|
text | The string input to tokenize. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
int | The integer number of tokens in the text. |
get_num_tokens_from_messages ¶
get_num_tokens_from_messages( messages: list[BaseMessage], tools: Sequence | None = None ) -> int Get the number of tokens in the messages.
Useful for checking if an input fits in a model's context window.
This should be overridden by model-specific implementations to provide accurate token counts via model-specific tokenizers.
Note
- The base implementation of
get_num_tokens_from_messagesignores tool schemas. - The base implementation of
get_num_tokens_from_messagesadds additional prefixes to messages in represent user roles, which will add to the overall token count. Model-specific implementations may choose to handle this differently.
| PARAMETER | DESCRIPTION |
|---|---|
messages | The message inputs to tokenize. TYPE: |
tools | If provided, sequence of dict, TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
int | The sum of the number of tokens across the messages. |
generate ¶
generate( messages: list[list[BaseMessage]], stop: list[str] | None = None, callbacks: Callbacks = None, *, tags: list[str] | None = None, metadata: dict[str, Any] | None = None, run_name: str | None = None, run_id: UUID | None = None, **kwargs: Any, ) -> LLMResult Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
| PARAMETER | DESCRIPTION |
|---|---|
messages | List of list of messages. TYPE: |
stop | Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks |
Used for executing additional functionality, such as logging or streaming, throughout generation. TYPE: |
tags | The tags to apply. |
metadata | The metadata to apply. |
run_name | The name of the run. TYPE: |
run_id | The ID of the run. TYPE: |
**kwargs | Arbitrary additional keyword arguments. These are usually passed to the model provider API call. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
LLMResult | An |
agenerate async ¶
agenerate( messages: list[list[BaseMessage]], stop: list[str] | None = None, callbacks: Callbacks = None, *, tags: list[str] | None = None, metadata: dict[str, Any] | None = None, run_name: str | None = None, run_id: UUID | None = None, **kwargs: Any, ) -> LLMResult Asynchronously pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
| PARAMETER | DESCRIPTION |
|---|---|
messages | List of list of messages. TYPE: |
stop | Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
callbacks |
Used for executing additional functionality, such as logging or streaming, throughout generation. TYPE: |
tags | The tags to apply. |
metadata | The metadata to apply. |
run_name | The name of the run. TYPE: |
run_id | The ID of the run. TYPE: |
**kwargs | Arbitrary additional keyword arguments. These are usually passed to the model provider API call. TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
LLMResult | An |
build_extra classmethod ¶
Build extra kwargs from additional params that were passed in.
validate_environment ¶
validate_environment() -> Self Validate that api key and python package exists in environment.
is_lc_serializable classmethod ¶
is_lc_serializable() -> bool Return whether this model can be serialized by LangChain.
bind_tools ¶
bind_tools( tools: Sequence[dict[str, Any] | type[BaseModel] | Callable | BaseTool], *, tool_choice: dict | str | bool | None = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, AIMessage] Bind tool-like objects to this chat model.
| PARAMETER | DESCRIPTION |
|---|---|
tools | A list of tool definitions to bind to this chat model. Supports any tool definition handled by TYPE: |
tool_choice | Which tool to require the model to call. Must be the name of the single provided function, |
**kwargs | Any additional parameters to pass to the TYPE: |
with_structured_output ¶
with_structured_output( schema: dict | type[BaseModel] | None = None, *, method: Literal[ "function_calling", "json_mode", "json_schema" ] = "function_calling", include_raw: bool = False, **kwargs: Any, ) -> Runnable[LanguageModelInput, dict | BaseModel] Model wrapper that returns outputs formatted to match the given schema.
| PARAMETER | DESCRIPTION |
|---|---|
schema | The output schema. Can be passed in as:
If See Behavior changed in Added support for Groq's dedicated structured output feature via |
method | The method for steering model generation, one of:
Learn more about the differences between the methods and which models support which methods here. TYPE: |
method | The method for steering model generation, either Note If using Warning
TYPE: |
include_raw | If If an error occurs during model output parsing it will be raised. If If an error occurs during output parsing it will be caught and returned as well. The final output is always a TYPE: |
kwargs | Any additional parameters to pass to the TYPE: |
| RETURNS | DESCRIPTION |
|---|---|
Runnable[LanguageModelInput, dict | BaseModel] | A If
|
Example: schema=Pydantic class, method="function_calling", include_raw=False:
from typing import Optional from langchain_groq import ChatGroq from pydantic import BaseModel, Field class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str # If we provide default values and/or descriptions for fields, these will be passed # to the model. This is an important part of improving a model's ability to # correctly return structured outputs. justification: str | None = Field(default=None, description="A justification for the answer.") model = ChatGroq(model="openai/gpt-oss-120b", temperature=0) structured_model = model.with_structured_output(AnswerWithJustification) structured_model.invoke("What weighs more a pound of bricks or a pound of feathers") # -> AnswerWithJustification( # answer='They weigh the same', # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' # ) Example: schema=Pydantic class, method="function_calling", include_raw=True:
from langchain_groq import ChatGroq from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str model = ChatGroq(model="openai/gpt-oss-120b", temperature=0) structured_model = model.with_structured_output( AnswerWithJustification, include_raw=True, ) structured_model.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), # 'parsing_error': None # } Example: schema=TypedDict class, method="function_calling", include_raw=False:
from typing_extensions import Annotated, TypedDict from langchain_groq import ChatGroq class AnswerWithJustification(TypedDict): '''An answer to the user question along with justification for the answer.''' answer: str justification: Annotated[str | None, None, "A justification for the answer."] model = ChatGroq(model="openai/gpt-oss-120b", temperature=0) structured_model = model.with_structured_output(AnswerWithJustification) structured_model.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # } Example: schema=OpenAI function schema, method="function_calling", include_raw=False:
from langchain_groq import ChatGroq oai_schema = { 'name': 'AnswerWithJustification', 'description': 'An answer to the user question along with justification for the answer.', 'parameters': { 'type': 'object', 'properties': { 'answer': {'type': 'string'}, 'justification': {'description': 'A justification for the answer.', 'type': 'string'} }, 'required': ['answer'] } model = ChatGroq(model="openai/gpt-oss-120b", temperature=0) structured_model = model.with_structured_output(oai_schema) structured_model.invoke( "What weighs more a pound of bricks or a pound of feathers" ) # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # } Example: schema=Pydantic class, method="json_schema", include_raw=False:
from typing import Optional from langchain_groq import ChatGroq from pydantic import BaseModel, Field class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str # If we provide default values and/or descriptions for fields, these will be passed # to the model. This is an important part of improving a model's ability to # correctly return structured outputs. justification: str | None = Field(default=None, description="A justification for the answer.") model = ChatGroq(model="openai/gpt-oss-120b", temperature=0) structured_model = model.with_structured_output( AnswerWithJustification, method="json_schema", ) structured_model.invoke("What weighs more a pound of bricks or a pound of feathers") # -> AnswerWithJustification( # answer='They weigh the same', # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' # ) Example: schema=Pydantic class, method="json_mode", include_raw=True:
from langchain_groq import ChatGroq from pydantic import BaseModel class AnswerWithJustification(BaseModel): answer: str justification: str model = ChatGroq(model="openai/gpt-oss-120b", temperature=0) structured_model = model.with_structured_output( AnswerWithJustification, method="json_mode", include_raw=True ) structured_model.invoke( "Answer the following question. " "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n" "What's heavier a pound of bricks or a pound of feathers?" ) # -> { # 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'), # 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'), # 'parsing_error': None # }