-
- Notifications
You must be signed in to change notification settings - Fork 11.2k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
Collecting environment information... ============================== System Info ============================== OS : CentOS Stream 9 (x86_64) GCC version : (GCC) 11.5.0 20240719 (Red Hat 11.5.0-11) Clang version : Could not collect CMake version : version 4.1.0 Libc version : glibc-2.34 ============================== PyTorch Info ============================== PyTorch version : 2.8.0+cu129 Is debug build : False CUDA used to build PyTorch : 12.9 ROCM used to build PyTorch : N/A ============================== Python Environment ============================== Python version : 3.12.11 (main, Aug 14 2025, 00:00:00) [GCC 11.5.0 20240719 (Red Hat 11.5.0-11)] (64-bit runtime) Python platform : Linux-6.4.3-0_fbk15_hardened_2630_gf27365f948db-x86_64-with-glibc2.34 ============================== CUDA / GPU Info ============================== Is CUDA available : True CUDA runtime version : 12.9.86 CUDA_MODULE_LOADING set to : LAZY GPU models and configuration : GPU 0: NVIDIA H100 GPU 1: NVIDIA H100 GPU 2: NVIDIA H100 GPU 3: NVIDIA H100 GPU 4: NVIDIA H100 GPU 5: NVIDIA H100 GPU 6: NVIDIA H100 GPU 7: NVIDIA H100 Nvidia driver version : 550.90.07 cuDNN version : Probably one of the following: /usr/lib64/libcudnn.so.9.12.0 /usr/lib64/libcudnn_adv.so.9.12.0 /usr/lib64/libcudnn_cnn.so.9.12.0 /usr/lib64/libcudnn_engines_precompiled.so.9.12.0 /usr/lib64/libcudnn_engines_runtime_compiled.so.9.12.0 /usr/lib64/libcudnn_graph.so.9.12.0 /usr/lib64/libcudnn_heuristic.so.9.12.0 /usr/lib64/libcudnn_ops.so.9.12.0 HIP runtime version : N/A MIOpen runtime version : N/A Is XNNPACK available : True ============================== CPU Info ============================== Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 368 On-line CPU(s) list: 0-367 Vendor ID: AuthenticAMD Model name: AMD EPYC 9654 96-Core Processor CPU family: 25 Model: 17 Thread(s) per core: 1 Core(s) per socket: 368 Socket(s): 1 Stepping: 1 BogoMIPS: 4792.79 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean flushbyasid pausefilter pfthreshold v_vmsave_vmload vgif vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm flush_l1d arch_capabilities Virtualization: AMD-V Hypervisor vendor: KVM Virtualization type: full L1d cache: 23 MiB (368 instances) L1i cache: 23 MiB (368 instances) L2 cache: 184 MiB (368 instances) L3 cache: 16 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-367 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected ============================== Versions of relevant libraries ============================== [pip3] numpy==2.2.6 [pip3] nvidia-cublas-cu12==12.9.1.4 [pip3] nvidia-cuda-cupti-cu12==12.9.79 [pip3] nvidia-cuda-nvrtc-cu12==12.9.86 [pip3] nvidia-cuda-runtime-cu12==12.9.79 [pip3] nvidia-cudnn-cu12==9.10.2.21 [pip3] nvidia-cufft-cu12==11.4.1.4 [pip3] nvidia-cufile-cu12==1.14.1.1 [pip3] nvidia-curand-cu12==10.3.10.19 [pip3] nvidia-cusolver-cu12==11.7.5.82 [pip3] nvidia-cusparse-cu12==12.5.10.65 [pip3] nvidia-cusparselt-cu12==0.7.1 [pip3] nvidia-nccl-cu12==2.27.3 [pip3] nvidia-nvjitlink-cu12==12.9.86 [pip3] nvidia-nvtx-cu12==12.9.79 [pip3] pyzmq==27.1.0 [pip3] torch==2.8.0+cu129 [pip3] torchaudio==2.8.0+cu129 [pip3] torchvision==0.23.0+cu129 [pip3] transformers==4.56.2 [pip3] triton==3.4.0 [conda] Could not collect ============================== vLLM Info ============================== ROCM Version : Could not collect vLLM Version : 0.11.0rc2.dev39+gb1ded114b (git sha: b1ded114b) vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled GPU Topology: GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 0-367 0 N/A GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 0-367 0 N/A GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 0-367 0 N/A GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 0-367 0 N/A GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 0-367 0 N/A GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 0-367 0 N/A GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 0-367 0 N/A GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X 0-367 0 N/A Legend: X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks ============================== Environment Variables ============================== CUDA_CACHE_PATH=/data/users/myuan/.nv/ComputeCache CUDA_INCLUDE_DIRS=/usr/local/cuda-12.9/include PYTORCH_SRC=/home/myuan/src/pytorch CUDA_NVCC_EXECUTABLE=/home/myuan/ccache/cuda/nvcc LD_LIBRARY_PATH=/usr/local/cuda-12.9/lib64: CUDA_CUDART_LIBRARY=/usr/local/cuda-12.9/lib64/libcudart.so CUDA_HOME=/usr/local/cuda-12.9 CUDA_HOME=/usr/local/cuda-12.9 PYTORCH_NVML_BASED_CUDA_CHECK=1 TORCHINDUCTOR_COMPILE_THREADS=1 CUDA_MODULE_LOADING=LAZY 🐛 Describe the bug
When running
vllm serve Qwen/Qwen2.5-7B --runner pooling --convert reward There's error
EngineCore_DP0 pid=2362918) File "/home/myuan/src/vllm/vllm/v1/worker/gpu_model_runner.py", line 3237, in _dummy_pooler_run (EngineCore_DP0 pid=2362918) max_task = max(output_size.items(), key=lambda x: x[1])[0] (EngineCore_DP0 pid=2362918) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (EngineCore_DP0 pid=2362918) ValueError: max() iterable argument is empty Full log in https://gist.github.com/iseeyuan/d21feea9f582a0eae7cddc5089509c09
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working